
UNIVERSITY OF UDINE

Bachelor’s Degree in Multimedia Science and Technology

Retrocomputing on PlayStation 1: design

and development of two Tech Demos for the

console’s 30th anniversary

Supervisor: Demis Ballis Student: Gabriele Passuello

Student ID: 157724

Academic Year 2023 / 2024

Contents

Abstract in Italian 1

Abstract 2

I Origins and Hardware of PlayStation 4

1 Thesis Objective 5

2 The Birth of PlayStation 7

2.1 Ken Kutaragi . 7

2.2 The Early Collaborations: Sony and Nintendo 8

2.3 PS-X . 8

2.4 The Birth of Sony Computer Entertainment 10

2.5 Market Assertion . 11

3 The Hardware of PlayStation 13

3.1 The Models . 13

3.1.1 The SCPH-1000 Model . 14

3.1.2 The SCPH-3000 Model . 16

3.1.3 The SCPH-5000 Model . 17

3.1.4 The SCPH-7000 Model . 18

3.1.5 The SCPH-9000 Model . 19

3.1.6 The SCPH-100 Model . 19

3.1.7 The DTL-H Models . 20

3.2 Hardware Overview . 21

3.2.1 System Architecture . 22

3.2.2 CPU Introduction . 23

3.2.3 Graphics System Introduction . 23

3.2.4 Audio System Introduction . 24

3.2.5 Additional Supports . 25

3.2.6 Motherboard Analysis . 26

3.3 The PSX CPU . 28

3.3.1 Processor Characteristics . 28

3.3.2 Processor Origins . 29

3.3.3 Coprocessors Analysis . 31

3.3.4 Memory with Addressable Access . 32

3.4 The PSX GPU . 35

3.4.1 VRAM . 36

3.4.2 Video Outputs . 36

3.5 The PSX SPU . 37

3.6 Management of PSX I/O Interfaces . 38

3.6.1 CD Module . 38

3.6.2 Front Ports . 39

3.6.3 Rear Ports . 39

II Development and Programming Fundamentals on PS1 40

4 Programming in MIPS Assembly 41

4.1 The 32 General-Purpose Registers . 41

4.2 Elementary MIPS Instructions . 43

4.2.1 Data Transfer Instructions . 43

4.2.2 Load Instructions . 44

4.2.3 Store Instructions . 45

4.2.4 Differences between Load and Store 45

4.2.5 Jump Instructions . 45

4.2.6 Branch Instructions . 46

4.2.7 The NOP Concept . 46

4.2.8 Arithmetical Instructions . 47

4.3 Console Emulation . 48

4.3.1 Programming Example . 48

4.3.2 The PS-EXE Format . 49

4.3.3 The Pseudo-Instruction Concept . 51

4.3.4 The Sub-Routine Concept . 51

4.4 Handling Binary Data . 52

4.4.1 Managing Negative Numbers . 52

4.4.2 Sign Extension . 53

4.4.3 Logical Operations . 54

4.4.4 The Bit-Shifting Concept . 55

4.5 In-depth Study of the MIPS Pipeline . 57

4.5.1 MIPS Pipeline Structure . 57

4.5.2 Limits of the MIPS Pipeline . 58

4.5.3 Managing Delay Slots . 58

4.5.4 Optimizing Delay Slots . 58

4.6 In-depth Study of the RISC Processor . 58

4.6.1 Historical Evolution and Context . 58

4.6.2 Differences between RISC and CISC 59

4.6.3 Advantages of RISC Architecture . 60

4.7 Graphics System . 60

4.7.1 The Frame Buffer . 61

4.7.2 Display Configuration Parameters . 62

4.7.3 Color and Depth . 63

4.7.4 PSX Primitives . 66

4.7.5 Packet Management and Communication between CPU and GPU 67

4.7.6 First Example of Basic Rendering in MIPS Assembly 68

4.8 Memory Management . 73

4.8.1 The MIPS Application Binary Interface 73

4.8.2 The Concepts of Heap and Stack . 74

4.8.3 Second Example of Basic Rendering in MIPS Assembly 75

4.8.4 The Concept of Variable and Vector Alignment 77

4.8.5 Third Example of Basic Rendering in MIPS Assembly 78

5 Programming in C 84

5.1 History of the PSY-Q SDK . 85

5.2 Key Programming Concepts . 86

5.2.1 Double Buffering . 86

5.2.2 Z-Sorting . 86

5.2.3 Ordering Tables . 86

5.3 Main System Libraries . 89

5.4 Geometry Transformation Engine . 90

5.4.1 3D Transformations . 90

5.4.2 Examples of GTE Instructions . 91

5.4.3 GTE Register Set . 94

5.5 Clipping . 96

5.5.1 Backface Culling . 96

5.5.2 Cohen-Sutherland Algorithm . 98

5.5.3 Liang-Barsky Algorithm . 99

5.5.4 Bounding Boxes . 99

5.6 Fixed Point Math . 101

5.7 In-depth Analysis of the PSX BIOS . 104

5.7.1 Reading Joypad Inputs via BIOS . 106

5.8 Reading the CD-ROM . 107

5.8.1 CD-ROM . 107

5.8.2 The Unique Design of PSX CDs . 110

5.8.3 Types of PlayStation Files . 110

5.8.4 Function to Read Binary Data from the Disc 112

5.8.5 Anti-Piracy Mechanisms . 113

5.9 Textures . 115

5.9.1 Foundations of Texture Mapping . 115

5.9.2 Concept of T-PAGE . 118

5.9.3 Concept of CLUT . 119

5.9.4 Insight on the TIM format . 119

5.9.5 PSX Graphic Artifacts . 120

5.10 Audio . 124

5.10.1 Types of ADPCM formats . 124

5.10.2 Details on VAG and XA formats . 125

5.10.3 Management of Audio Tracks on CD-ROMs 127

5.10.4 Example of audio implementation . 129

III Creating Demos on PlayStation: A Technical and Creative Show-

case 130

6 Demo Disc One (Showcase of Various Demos) 131

6.1 Cube Transformations . 131

6.2 Bouncing Cubes . 132

6.3 Multiplayer . 133

6.4 Texture Mapping . 134

6.5 Fog . 134

6.6 Phong . 135

6.7 Movie / M-DEC . 137

6.8 3D Animation . 139

7 Demo Disc Two (WipEout) 141

7.1 Reverse Engineering WipEout . 141

7.2 Structure of a PRM File (Object) . 143

7.3 Ship Rendering Part 1 (Primitives and Wireframe) 145

7.4 Structure of a CMP File (Texture) . 146

7.5 Ship Rendering Part 2 (Textures) . 147

7.6 Structure of TRV, TRF, and TRS Files (Track Vertices, Faces, Sections) 149

7.7 Track Rendering . 151

7.8 Implementation of Physics, Gameplay, and Sound Effects 154

IV Resources and Final Considerations 160

8 Conclusions 161

Glossario 162

Visual Documentation 164

General Bibliography 169

Abstract in Italian
Nel 1994, l’azienda giapponese Sony rivoluzionò il settore videoludico con il lancio di PlaySta-

tion, una console che ridefinı̀ gli standard tecnologici e creativi dell’epoca grazie ad un’ ar-

chitettura innovativa, nettamente superiore rispetto alle console della generazione precedente.

A trent’anni dal suo debutto, questa tesi si propone di celebrare l’importanza tecnologica di PS1,

analizzandone l’impatto storico e ricreando, in un contesto moderno, le condizioni operative

degli sviluppatori dell’epoca attraverso un approccio di retrocomputing.

Con retrocomputing si intende lo studio, la ricostruzione o l’utilizzo di sistemi informatici del

passato, con l’obiettivo di ricreare esperienze originali in un contesto moderno o di sperimentare

con tecnologie obsolete.

L’obiettivo principale di questa analisi vuole essere la valorizzazione delle potenzialità tecniche

della console attraverso lo sviluppo di due Tech Demo ispirate ai software promozionali Sony,

utilizzati all’epoca per mettere in evidenza le capacità grafiche, computazionali e sonore del

sistema. Questi dischi dimostrativi hanno l’obiettivo di esplorare funzionalità come il rendering

di oggetti in tre dimensioni, l’ottimizzazione delle risorse hardware e le principali novità tecniche

della console.

La tesi affronta inoltre lo sviluppo di software per PS1, approfondendo la programmazione

in due linguaggi di programmazione, ”MIPS Assembly” (linguaggio di basso livello) e ”C”

(linguaggio di alto livello). Attraverso questi due linguaggi vengono analizzati concetti chiave

di computer grafica come il texture mapping, il rendering 3D e gli algoritmi di clipping.

A fare da supporto alla parte pratica viene dedicata un’analisi dettagliata alla storia e all’hardware

della console, per comprendere al meglio il funzionamento interno della console e le sue

innovazioni tecnologiche. Lo studio dei componenti hardware come CPU, GPU, Memoria e

moduli I/O permette di comprendere appieno le nuove soluzioni adottate.

Questo lavoro non solo vuole ricostruire fedelmente il processo di sviluppo degli anni ’90

ma anche offrire una retrospettiva unica sull’importanza di PS1 nel panorama videoludico,

evidenziandone le sfide, i limiti tecnologici e le innovazioni che hanno definito un’epoca di

industria del gaming.

1

Abstract
In 1994, the Japanese company Sony revolutionized the video game industry with the launch of

PlayStation, a console that redefined the technological and creative standards of the era thanks to

an innovative architecture, significantly superior to the previous generation of consoles. Thirty

years after its debut, this dissertation aims to celebrate the technological significance of the PS1

by analyzing its historical impact and recreating, in a modern context, the operational conditions

of the developers of that time through a retrocomputing approach.

Retrocomputing refers to the study, reconstruction, or use of past computer systems with the

aim of recreating original experiences in a modern context or experimenting with obsolete

technologies.

The main goal of this analysis is to highlight the technical potential of the console by developing

two Tech Demos inspired by Sony’s promotional software, which were used at the time to

showcase the system’s graphical, computational, and audio capabilities. These demonstration

discs aim to explore features such as 3D object rendering, hardware resource optimization, and

the console’s key technical innovations.

The dissertation also delves into the development of PS1 software, focusing on programming

in two languages: ”MIPS Assembly” (a low-level language) and ”C” (a high-level language).

Through these languages, key computer graphics concepts such as texture mapping, 3D render-

ing, and clipping algorithms are analyzed.

To support the practical work, a detailed analysis of the history and hardware of the console

is provided, offering insights into the internal workings of the system and its technological

innovations. This analysis of hardware components such as the CPU, GPU, memory, and I/O

modules allows for a comprehensive understanding of its technical advancements.

This work not only aims to faithfully reconstruct the development process of the 1990s but also

offers a unique retrospective on the importance of the PS1 in the gaming landscape, highlighting

the challenges, technological limitations, and innovations that defined an era in the video game

industry.

2

3

Part I

Origins and Hardware of PlayStation

4

Chapter 1

Thesis Objective

In 1994, SONY, a leading Japanese technology company, entered the video game market with

the launch of its first console, the PlayStation—an event that marked a turning point for the

entire industry. This product succeeded in redefining the technological and creative standards of

gaming, thanks to a hardware and software architecture that was highly innovative for its time.

Also known as the PS1 or PSX, the console represented a significant generational leap compared

to previous platforms such as the Super Nintendo Entertainment System and the Sega Genesis.

Thirty years after its debut, the PS1 anniversary provides a unique opportunity to reflect on

the technological and cultural impact of this console, analyzing the advances it introduced and

the technical challenges that accompanied its development. This celebration goes beyond mere

nostalgia, aiming instead to highlight the console’s role as a milestone in the evolution of the

video game medium.

This thesis aims to analyze and showcase the technical potential of the console by recreating, in

a modern context, the working conditions faced by developers of the time.

To this end, a series of ”Demo Discs” will be developed, inspired by the demonstration software

used by SONY to showcase the console’s capabilities during its promotional phase (targeted at

the press, journalists, and the public) prior to its official release. These programs were intended

to highlight the system’s graphical, audio, and computational capabilities, demonstrating what

the console was able to achieve using the technology available in the 1990s.

The work was carried out by simulating the use of original or equivalent period tools, such as

a 32-bit development platform and SONY’s official development software. This approach will

faithfully reproduce the historical software development process for the PlayStation, offering a

close-up view of the techniques and constraints programmers faced at the time. In particular, the

focus will be on creating two “Tech Demos” capable of leveraging the console’s strengths—3D

graphics rendering, high-polygon models, advanced audio handling, and optimized use of

5

Figure 1.1: Excerpts from the British magazine *Edge* (issues 05, 06, 09, 11)

[1]

hardware resources.

The two discs, which represent the tangible outcome of this process and a concrete link to the

past, will be burned onto CD-ROMs, allowing them to be tested on an original console and thus

providing an additional level of practical and historical experience.

Through this research, the aim is to recreate an experience that explores the PlayStation’s

technological capabilities while simultaneously restoring the development conditions present

at the time of its launch. At the same time, the goal is to achieve as faithful a reproduction

as possible of the challenges and innovations that characterized the console’s early years. In

doing so, it will be possible to gain a more concrete understanding of the PSX’s importance as a

turning point in the evolution of gaming, connecting contemporary development work with that

undertaken by programmers thirty years ago.

6

Chapter 2

The Birth of PlayStation

2.1 Ken Kutaragi

The birth of PlayStation is a story of vision, determination, and innovation. Behind this success

lies a key figure: Ken Kutaragi, the visionary engineer who has been nicknamed the ”father of

PlayStation.” His passion for technology and his commitment to tackling seemingly impossible

challenges changed the course of video game history.

Figure 2.1: Ken Kutaragi

[2]

In 1984, during a presentation at the Sony Information Processing Research Center, Kutaragi

was struck by the incredible real-time 3D graphical processing power offered by Sony’s ”System

G,” a workstation designed for television broadcasting. This event sparked an idea in him that

would later become revolutionary: bringing real-time 3D graphical power to video games, an

objective that would lead to the PlayStation project. Although Sony was not initially a company

tied to this sector, Kutaragi began to dream big, envisioning a console capable of competing

with and even dominating the market.

7

2.2 The Early Collaborations: Sony and Nintendo

In the early 1990s, Kutaragi managed to secure the opportunity to work closely with Nintendo.

After noticing the poor sound quality of the Famicom (NES), Kutaragi convinced Sony to develop

a powerful audio chip for the Super Nintendo (SNES) console. This marked the beginning of

a collaboration that, although brief, allowed him to gain experience in the video game industry

and advance his vision.

At the same time, the video game market was undergoing a major transformation. The industry

was adapting to the growing importance of CD-ROM technology, which promised more ad-

vanced interactive experiences and a cheaper solution compared to expensive cartridges. While

other major companies in the sector, such as Sega, Philips, and Commodore, were already

entering the field, Sony also began to consider the idea of developing its own CD-ROM-based

gaming system.

Figure 2.2: A CD-ROM in the tray of a partially open CD-ROM drive.

[3]

In 1991, in collaboration with Nintendo, Sony designed a CD-ROM unit for the SNES, which

would have combined a CD drive with the aforementioned console. The initial plan called for

a collaboration in which Sony would create and produce the CD media, while Nintendo would

maintain control over the production of cartridges. However, the relationship between the two

companies quickly deteriorated. Nintendo, concerned about losing control over the potential

CD-ROM market, decided to terminate negotiations with Sony and secretly struck a deal with

Philips to develop a separate CD-I Add-On.

2.3 PS-X

During the 1991 Consumer Electronics Show, Sony proudly announced the new partnership

with Nintendo, showcasing a prototype of the ”SNES CD-ROM PlayStation” and a series of

games already in development. Shortly after, Nintendo publicly denied Sony’s announcement,

8

revealing a new collaboration with Philips (deemed more advantageous for Nintendo). As part

of the agreement with the latter company, Nintendo granted the use of its intellectual properties

to develop games for the ”Philips CD-i,” a console not produced by Nintendo.

Figure 2.3: Prototype of the Sony-Nintendo Play Station

The big N not only faced legal repercussions from Sony but also risked a serious negative backlash

from the Japanese business community. The company had violated a sort of ”unwritten law,”

according to which a Japanese company should never side against another Japanese company in

favor of a foreign one.

This betrayal marked a crucial turning point. Ken Kutaragi, disappointed by Nintendo’s move,

went to Sony’s president, Norio Ohga, and proposed to continue developing their own gaming

console. Despite Sony’s initial skepticism about video games, Ohga, impressed by Kutaragi’s

determination, responded with the famous decisive order: ”Just do it!”. Thus, Kutaragi began

working in secret on the development of a gaming console that would use CD-ROM technology

and a powerful 32-bit processor, with 3D graphics capabilities that would rival the rest of the

expensive professional workstations.

The new console was named ”PlayStation” as a symbol of a new era for video games, but it was

initially coded with the name ”PS-X” as a challenge to Nintendo. Kutaragi had a clear goal:

to create a console capable of delivering an unprecedented real-time gaming experience, with

audio and visual quality that would render the traditional cartridge-based system obsolete.

Figure 2.4: Sony PlayStation

9

2.4 The Birth of Sony Computer Entertainment

In 1993, Sony decided to establish a new division dedicated to video games, called Sony

Computer Entertainment, which would manage the development and distribution of the new

console. Despite the skepticism of many within Sony, who considered the video game market

a marginal sector, Kutaragi continued to push for the project’s realization. The initial doubts

about Sony’s ability to enter a market dominated by Sega and Nintendo were soon put aside

as the powerful hardware of PlayStation and its innovative graphic technology began to make

headway. The success of PlayStation was largely determined by its support for high-quality

Figure 2.5: Sony Computer Entertainment

Logo (1993-2016)

[4]

Figure 2.6: Psygnosis Logo

[5]

titles, such as ”Virtua Fighter,” which demonstrated that 3D games were not only possible but

could also be extremely well-received by players. Sony also invested huge resources to attract

developers and programmers, managing to gain the support of over 250 development houses in

Japan, including major partners like Namco, Capcom, SquareSoft, and Konami.

One of the key decisions for the success of PlayStation was the acquisition of Psygnosis, a

British development studio known for its games on Atari ST and Commodore Amiga. The

Psygnosis team, along with SN Systems, contributed to the creation of the official development

kit for PlayStation, the PsyQ Development Kit, making development for the platform easier.

Psygnosis not only offered technical support but also created some of the most iconic titles for

PS1, such as Wipeout, Novastorm, 3D Lemmings, Assault Rigs, and Destruction Derby. Later,

Sony renamed the company Sony Interactive Entertainment, making it an integral part of its

strategy for the console’s success.

Historic was also the announcement of the console’s price at the 1995 E3: 299 dollars. This

price was revealed in a press conference lasting about a minute, following Sega’s announcement

that the cost of its Sega Saturn would be 399 dollars.

Sources: [61].

10

Figure 2.7: From left to right: Covers of the games WipEout, Novastorm, and Destruction

Derby.

[6][7][8]

2.5 Market Assertion

In December 1994, PlayStation was finally launched in Japan, and its success was immediate.

In less than a year, the console sold over a million units. On September 9, 1995, Sony

officially launched PlayStation in the United States and Europe, with an unprecedented marketing

campaign aimed at conquering a mature and sophisticated audience. The motto ”If you’re not

ready for PlayStation, you’re not ready for the future” became a symbol of a radical change in

the perception of video games as entertainment.

PlayStation not only managed to break into the video game market but also exceeded Sony’s

expectations, becoming a cultural icon thanks to its powerful hardware, a vast library of exclusive

games, and the ability to attract more and more external developers. Among the best-selling

titles were ”Ridge Racer,” ”Tekken,” and ”Crash Bandicoot,” which quickly became classics in

the history of video games. Sources: [62][63].

Figure 2.8: Examples of some successful PS1 games.

[9][10][11][12][13][14]

11

Figure 2.9: Some covers of the British magazine EDGE related to PlayStation.

[1]

12

Chapter 3

The Hardware of PlayStation

3.1 The Models

Figure 3.1: Various PlayStation models. From bottom to top: SCPH-1000, SCPH-3000, SCPH-

5501, and SCPH-9001.

[15]

Each PlayStation model has a specific code used to identify its version. The first part of this

alphanumeric code consists of an acronym. For models intended for the consumer market, the

code SCPH is used, which stands for ”Sony Computer PlayStation Hardware,” while for consoles

distributed as development kits to developers, the code DTL-H is employed, an acronym for

”Development Tool Hardware.”

This acronym is followed by a series of four numbers. The first three numbers indicate the model,

while the final digit corresponds to the target region for commerce. For the PAL market, there

is an additional subdivision, marked by the letters A, B, and C, which correspond respectively

to the Australian, British, and Continental European markets.

Sources: [64].

13

Below is a list of regions:

Code Country Boot ROM Region Video Power Supply

0 Japan Japanese NTSC NTSC 100V

1 USA/Canada English NTSC/C NTSC 110V

2 Europe/Australia/PAL English PAL PAL 220V

3 Asia Japanese NTSC NTSC 220V

Table 3.1: Subdivision of regions and boot characteristics

3.1.1 The SCPH-1000 Model

The SCPH-1000 model identifies the first version of PlayStation, released in Japan on December

3, 1994. Subsequently, it was introduced in the United States (as SCPH-1001) and in Europe

(as SCPH-1002) in 1995. This console not only allowed playing titles on CD-ROM but also

enabled music playback from audio CDs. A choice that significantly contributed to its success.

The ability to play music easily transformed the PlayStation into a stereo system, while the low

cost of CDs benefited both Sony and developers, allowing games to be sold at competitive prices

while still maintaining a good profit margin.

Figure 3.2: SCPH-1000 model packaging

[16]

The architecture of the SCPH-1000 actually had some structural issues. The laser lens was

positioned in the upper left corner of the disc compartment, very close to the internal power

supply, causing overheating and interfering with the performance of the optical block. Moreover,

the support of the optical block was made of thin ABS plastic with a high concentration of weight

14

on the left side of the laser slide. Over time, this design led to misalignment of the lens in 85%

of cases, compromising the reading of CD-ROMs. Some users attempted to solve the problem

by turning the console upside down or adding a counterweight to the slide, but these operations

voided the warranty. Later, Sony introduced a new aluminum optical block to correct these

defects.

Figure 3.3: SCPH-1000 model disc compartment

[17]

Despite these defects, the SCPH-1000 is considered the model with the best video and audio

quality of the entire PlayStation line. The presence of numerous capacitors and an RGB Encoder

ensured a clear video signal, while the logic board integrated a 16-bit A/D audio converter with

Delta-Sigma modulation, developed by Asahi Kasei Microsystems (model AK4309VM). This

combination allowed realistic and linear audio, making the SCPH-1000 the reference model for

audio quality.

Today, the SCPH-1000 is a rare model, both because it was the very first product and because

few units were made before the transition to the next model. Moreover, it is the only one to

include, in addition to the ”AV Multi-Out” connector, also individual RCA connectors and a

5-pin S-VIDEO port, which were removed in later versions.

Figure 3.4: Back of the SCPH-1000 model

[18]

It is important to emphasize that the SCPH-1000 code does not correspond to the same charac-

teristics in models intended for international markets. The SCPH-1001 (USA) and SCPH-1002

15

(Europe) versions, released in 1995, were based on the architecture of the Japanese SCPH-3000

model, launched around the same time to solve the initial structural problems. Therefore, the

”true” SCPH-1000 model is exclusive to the Japanese market, while the Western models follow

the specifications of the SCPH-3000 series. Sources: [19].

3.1.2 The SCPH-3000 Model

Figure 3.5: SCPH-3500 model packaging

[20]

The SCPH-3000 and SCPH-3500 series were released exclusively in Japan. The SCPH-3500

series was sold within a bundle called ”Fighting Box,” aimed at fans of fighting games, which

included 2 controllers and a Memory Card. Starting from these versions, the S-video output

was removed, a feature present in the previous SCPH-1000 models.

Figure 3.6: Back of the SCPH-3000 model

[21]

Although these models were never marketed in the West, the SCPH-1001 (USA) and SCPH-

1002 (Europe) versions, released in September 1995, are based on the same architecture as

the Japanese SCPH-3000. Therefore, despite belonging to the SCPH-1000 series, the Western

versions could be considered part of the SCPH-3000 series due to their characteristics. Sources:

[65].

16

3.1.3 The SCPH-5000 Model

With the introduction of the 5000 series, Sony made some changes to the hardware structure and

design of PlayStation, while maintaining most of the original features. One of the main updates

concerned the position of the laser lens, which was moved to the right and placed in a central

area, away from the electrical compartment, to improve stability and durability. On the back

of the console, the classic AV Multi-Out replaced the three individual RCA connectors (red,

white, and yellow), while still keeping the AKM DAC chip for audio management, ensuring

compatibility with AV systems without altering audio quality.

In Europe, the SCPH-5502 series introduced aesthetic changes to align with the symbolic con-

ventions of the buttons: the ”Power” and ”Open” buttons were replaced with more recognizable

universal symbols, standardizing the design for different markets.

Figure 3.7: The position of the optical reader has been changed compared to previous models

[22]

From a hardware point of view, the 5000 series does not present significant changes compared to

the previous series, except for updates to the BIOS and new packaging, which in some markets

include bundles with specific games or the new Dual Shock controller. This series constitutes

the second model released in the West, following the SCPH-1000 series. In Japan, however,

the 5000 series represents the third model, having been preceded by the SCPH-3000 series,

equivalent to the SCPH-1000 series released in Europe and the United States.

Notably, the SCPH-5903 model is the only one in the 5000 series capable of reading Video

CDs, designed exclusively for the Asian market, where the Video CD format was more popular.

This model differed in its ability to reproduce multimedia content and represented an attempt to

expand the console’s offering towards home entertainment functionalities. Sources: [66].

17

Figure 3.8: PlayStation Video CD. SCPH-5903 model

[23]

3.1.4 The SCPH-7000 Model

The SCPH-7000 series represented an important evolution for PlayStation, with innovations

aimed at both the operating system and the aesthetics of the console. While maintaining an

identical external design to the previous model, Sony introduced a new graphical interface and

a system of visual effects for the music player, previously available only on the ”DEMO ONE”

disc.

From a hardware perspective, this version eliminates the standard composite video and stereo

audio outputs, leaving the AV Multi-Out as the only option for audio-video connection. The

SCPH-7000 series is also the last to mount the AKM DAC chip (AK4309AVM), replaced in a

rare variant of the model with the BB DAC (PCM1729E). The internal components were also

reinforced, definitively solving the overheating issues of the console.

Figure 3.9: Back of the SCPH-7000 model

[24]

This series also marked the adoption of the Dual Shock as the standard controller. With the

SCPH-7003 model, Sony expanded the distribution of PlayStation to other regions of Asia.

Finally, to celebrate the 10 million units sold in the three main markets (Japan, USA, Europe),

Sony released a limited edition SCPH-7000W, known as the ”10 Million Model,” characterized

by an exclusive Midnight Blue color. Sources: [67].

18

Figure 3.10: Posters related to the launch of the DualShock controller and the Midnight Black

edition

[25][26]

3.1.5 The SCPH-9000 Model

With the SCPH-9000 series, Sony removed the parallel I/O port to block the use of devices like

Action Replay and Gameshark, thus preventing the use of illegal cheats.

Figure 3.11: Back of the SCPH-9000 model

[27]

This model also improved the durability of the laser, but the audio quality suffered a significant

decline compared to previous versions. The playable demo CD was also removed from the

packaging.

Launched globally in June 1999, the SCPH-9000 series hit the market at a price of $129.99 in

the United States and 15,000 yen in Japan. Sources: [68].

3.1.6 The SCPH-100 Model

Despite the debut of PlayStation 2 in March 2000, Sony decided not to withdraw the original

PlayStation, given its continued popularity and high sales. Thus, on July 7 of the same year,

19

PSone was launched, a redesigned and more compact version of the original PlayStation.

PSone featured a more articulated and easily portable design, with external power supply to

reduce weight and overheating. It did not include either the parallel port or the AV serial

cable for multiplayer gaming. Additionally, the adapters for the Memory Card and DualShock

controllers were soldered into the console. The light gray color of the PSone, called ”Light

Gray,” gave it a modern and distinctive appearance.

The console also allowed the use of an additional display, making it completely portable.

Furthermore, Sony collaborated with NTT DoCoMo to enable connection with I-Mode mobile

phones via a dedicated cable, available only in Japan.

Figure 3.12: PSone model with its peripherals

[69]

PSone continued to be produced until March 2006, when Sony announced the end of its

production. In total, 102.49 million PlayStation units were sold, of which 28.15 million were

PSone. Sources: [28].

3.1.7 The DTL-H Models

The PlayStation debug consoles were similar to the retail versions but designed to facilitate

game testing. They were generally in blue or green colors, with some special units in gray for

demonstration purposes. Unlike the development kits, which had 8 MB of RAM, the debug

consoles had only 2 MB and used standard boot ROMs. The main difference was in the CD

controller, modified to identify as ”licensed” any disc with a data track, allowing developers to

test games on written CDs. This also allowed the launch of games from other regions, although

it was not officially supported. Sony produced specific debug consoles for each region, and its

”technical requirement checklist” required game testing on these units. The differences in the

20

case colors derived from a hardware change: the blue models (DTL-H100x, DTL-H110x) used

the Rev. A or Rev. B chip, while the green ones (DTL-H120x) mounted the Rev. C chip, faster

in some operations. Programmers had to test games on both types of machines, as the hardware

differences affected the behavior of the games. Sources: [70].

In 1997, Sony released a special version of PlayStation called Net Yaroze in the West (it was

released a year earlier in the Japanese market). More expensive than the original console (750

dollars compared to the 299 dollars of the standard model), it was also harder to find, as it was

available only by mail order. Yaroze can be translated as ”Let’s work together!”. The console had

a matte black finish, instead of gray, and came with tools and instructions that allowed users to

program games and applications for PlayStation, without the need for a professional development

kit. The Net Yaroze did not offer all the functionalities of the complete development kit, such

Figure 3.13: On the left, the DTL-H1202 Debugging Station model. On the right, the Net

Yarooze DTL-H300x kit

[29][30]

as on-demand support and code libraries that official developers had access to. Moreover,

programmers were limited to 2 MB of total RAM for games. One of the unique features of

the Net Yaroze was the absence of regional locks, allowing the execution of games from any

region. However, three specific models were produced for each region: Japan (DTL-H3000),

North America (DTL-H3001), and Europe/Australia (DTL-H3002), with differences in video

support: the European/Australian model used PAL mode, while the other two used NTSC. In

any case, this console was still not able to reproduce the CD-R format, so it was not possible to

create standalone Yaroze games without a modified PlayStation. Sources: [71].

3.2 Hardware Overview

After this overview of the various PSX models, the analysis will focus on the hardware in more

detail. In this thesis, given its importance, the attention will be directed to the first model,

the SCPH-1000, as it itself marked the beginning of the PlayStation story, from 1994 to today.

Sources: [72][73][74].

21

3.2.1 System Architecture

PlayStation consists of groups of processors and devices that manage functions of all kinds, such

as video and audio, around a 32-bit RISC CPU, illustrated in the block diagram below taken

from the official Sony PlayStation hardware manual.

Figure 3.14: Block diagram of PlayStation.

The console is equipped with a 33.86 MHz 32-bit MIPS R3000A CPU, a significant technological

advancement compared to previous generations of consoles that operated at about 7 MHz

(Sources: [75]) and, even earlier, at 1.7 MHz (Sources: [76]).

Among the coprocessors, we find the CP0 for system control, the CP2 (Geometry Transformation

Engine - GTE) for geometric transformation, and the MDEC (Motion Decoder) for video

decoding.

22

The main memory consists of 2 MB of EDO RAM, while the VRAM amounts to 1 MB, used

to store textures, frame buffers, images, fonts, and more. The graphics system includes a GPU

based on the SCPH-9000 chip, responsible for rasterization.

The SPU (Sound Processing Unit) manages audio processing, offering 24 ADPCM channels at

16 bits. Finally, the CD Subsystem is equipped with a DSP (Digital Signal Processing) dedicated

to controlling the motor and laser for data reading.

3.2.2 CPU Introduction

The CPU is the heart of the system and is designed with memory and an interrupt controller, based

on a 32-bit RISC architecture. It integrates an instruction cache (”I cache”) and a scratchpad

memory, allowing direct management of the main memory.

3.2.3 Graphics System Introduction

The graphics system of PlayStation consists of two main elements: a processor for creating

graphic data (GTE) and one for graphic drawing (GPU).

The GTE performs coordinate transformations and light source calculations as a coprocessor of

the CPU. The GPU, on the other hand, executes the polygon drawing instructions imparted by

the CPU. The CPU also has a non-shared two-dimensional addressing space where the frame

buffer is mapped. The frame buffer is the portion of memory dedicated to the temporary storage

of data that make up the image or frame to be displayed on the screen. It will be analyzed in

more detail in the following chapters.

The fundamental principle of PlayStation’s graphics system is simple: the CPU transmits the

drawing data, such as textures, polygons, and color palettes (CLUT), to the GPU, which saves

this information in the frame buffer. Subsequently, the GPU proceeds with the drawing of the

polygons based on the color and coordinate information provided by the GTE.

23

Figure 3.15: PlayStation graphics system

3.2.4 Audio System Introduction

The audio system of PlayStation also consists of two components, a processor for sound repro-

duction (SPU) and a CD-ROM decoder.

The SPU (Sound Processing Unit) integrates a 24-voice ADPCM sound source, the operation

of which is managed by the CPU. This unit has a dedicated addressing space, where an audio

buffer is mapped. The CPU sends ADPCM data to this buffer, while the SPU reproduces them

using the information related to Key On/Key Off and modulation.

Figure 3.16: PlayStation audio system

24

The CD-ROM decoder reproduces audio while reading PCM or CD-ROM XA ADPCM data

present on the disc. The audio output of the decoder is temporarily transferred to the SPU,

where it is mixed with the output of the SPU to generate the final track.

3.2.5 Additional Supports

The CD-ROM system consists of the components necessary to read CD-ROMs, such as the

reader and decoder, and supports CD-DA, CD-ROM XA, and PlayStation formats.

The Data Expansion Engine performs high-speed inverse DCT transformations and manages

the expansion of JPEG and MPEG (frame compressed only) data.

The PlayStation controller is an interface that transmits the player’s intentions to the applications

and allows connecting numerous controllers via the MultiTap peripheral. The memory card is

a device for saving data after ”reset” or power off, with the possibility of connecting multiple

cards via.

Finally, there are two types of expansion ports available: serial and parallel.

Figure 3.17: An example of the MultiTap unit for Multiplayer gaming

[31][32]

25

3.2.6 Motherboard Analysis

Figure 3.18: Motherboard of the SCPH-1000 model

26

Figure 3.19: Motherboard of the SCPH-1000 model with details

1. AV Multi Out

2. S-Video Out

3. Composite RCA Out

4. RFU DC Out

5. Stereo RCA Out

6. Serial I/O Port

7. Parallel I/O Port

8. 512 KB DRAM

9. Sound Processing Unit

10. Serial DAC

11. CD-ROM Controller

12. CD-ROM DSP

13. CD Drive Data

14. CD Drive Power

15. PSU board Connector

16. Front panel Connector

17. RGB Encoder

18. Composite Encoder

19. 512 KB VRAM

20. 512 KB VRAM

21. Sony GPU

22. 512 KB BIOS ROM

23. Sony CPU SoC

24. 512 KB EDO DRAM

25. 512 KB EDO DRAM

26. 512 KB EDO DRAM

27. 512 KB EDO DRAM

27

3.3 The PSX CPU

3.3.1 Processor Characteristics

The processor of the PlayStation 1, identified by the code ”Sony CXD8530BQ”, is classified

as a ”System on a Chip” (SoC) due to the presence of integrated co-processors that support the

execution of different tasks, all within the same chip.

Figure 3.20: Sony CXD8530BQ

[33]

Following are its main characteristics:

• It has a clock frequency of 33.86 MHz.

• The processor model is an R3000A developed by MIPS and LSI Logic.

• It is a CPU with a 32-bit RISC architecture. RISC stands for Reduced Instruction Set

Computer.

• It is an ISA MIPS I. MIPS stands for Microprocessor without Interlocked Pipelined

Stages. Among its main features, the words are 32 bits long and the instruction set

includes multiplication and division operations.

ISA (Instruction Set Architecture) is a specification that defines the aspects of the CPU

visible to a programmer in machine language or to an assembler, such as registers, memory

model, input/output, and exceptions. Although the hardware implementation may vary, it

must ensure compatibility with the ISA, allowing a program compiled for a given ISA to

be executed on any hardware that implements it.

• It has 32 general-purpose registers and 2 registers for multiplication and division. All

registers are 32 bits, and one register (R0) is always zero.

28

• 32-bit data bus: In PlayStation, the data bus is divided into two:

– Main Bus (32-bit): Connects the MDEC unit and the GPU.

– Sub Bus (16/8-bit): Connects the other chips and I/O interfaces. This bus is managed

by the Bus Interface Unit, which also allows access to special ports of the GPU and

SPU.

• 32-bit address bus: Allows access to up to 4 GB of physical memory, including RAM and

memory-mapped I/O.

• 5-stage pipeline: Allows simultaneous execution of up to five instructions. These instruc-

tions are respectively Fetch, Decode, Execute, Memory, and Write. It is not necessary to

wait for one stage to finish before starting the next. Sources: [77].

• 4 KB instruction cache: It can be ”isolated”, allowing the program to directly manipulate

the content of the instruction cache.

• Absence of data cache: There is no cache for data. However, 1 KB of memory normally

reserved for data cache is mapped to a fixed address. This area, known as Scratchpad, is

made up of high-speed SRAM.

• 2 MB of RAM for general use. Curiously, on the motherboard, EDO-type chips have

been mounted, which are slightly more efficient than traditional DRAM, thanks to lower

latency.

At some point, subsystems like graphics, audio, or CD will require large amounts of data at high

speeds, exceeding the CPU’s ability to meet such demand.

To meet this need, the CD-ROM Controller, MDEC, GPU, SPU, and parallel port can use

a dedicated DMA controller to manage data transfers. DMA takes control of the main bus,

allowing faster transfers than using the CPU, which is still necessary to configure the transfer.

However, when DMA is active, the CPU cannot access the main bus and remains inactive, unless

it is working on data in the Scratchpad.

3.3.2 Processor Origins

In the 1990s, the landscape of CPUs saw a significant transformation. The 8-bit processors,

which had dominated the market for a long time, were now obsolete and out of the spotlight.

Similarly, the Motorola 68000, along with other 16-bit processors that had been successful at

the end of the 1980s, was beginning to make way for new designs destined to replace them.

At first, it seemed that technological development had reached a standstill. However, a new

generation of relatively unknown CPUs began to enter the mass market. These new designs

29

were, in many cases, the result of academic research, aimed at testing and demonstrating

particular design ideas. Among these new processors, significant examples include MIPS,

PowerPC, SPARC, and ARM.

These chips had a common characteristic: they all followed the RISC (Reduced Instruction Set

Computer) architecture, which radically changed the approach to CPU design and programming.

A key principle of the RISC architecture established that instructions should not combine register

operations with memory operations, allowing designers to simplify the circuit that executed the

instructions and exploit parallelism to improve performance.

The first commercial processor to implement a RISC design was the ”MIPS R2000” from MIPS

Computer Systems, which was adopted in several UNIX workstations. However, it was only in

1987 that MIPS chips gained more visibility, when Silicon Graphics Incorporated (SGI) adopted

them to power their systems. SGI became a key player in the field of computer graphics, thanks

to the development of hardware-accelerated vertex pipeline, an innovation that had previously

been done by software. The acquisition of MIPS by SGI consolidated the company’s position

in both the CPU and advanced graphics markets.

Before the PlayStation design began, MIPS had already adopted a licensing-based business

model for their designs, selling their CPUs in the form of licenses that allowed licensees to

customize and produce them independently. Among the options offered was the R3000A CPU,

which appeared as a cost-effective solution, but did not belong to the company’s flagship line

(unlike the R4000, chosen by other manufacturers later).

Meanwhile, Sony, while internally designing its own audio and graphics chips, needed a pro-

cessor capable of supporting both components. The CPU had to be powerful enough to exploit

the potential of the graphics and audio chips developed by Sony, but also cheap enough to keep

the console’s price competitive.

In this context, LSI Logic, a semiconductor manufacturer that had obtained a license from MIPS,

offered a program called ”CoreWare”, which allowed companies to develop customized CPUs

using a series of modular blocks. Among these, was the ’CW33300’ block, a core derived from

the LSI LR33300, a chip already marketed by LSI.

It was found that the LSI LR33300 and CW33300 chips were binary compatible with the MIPS

R3000A family, although they presented slight architectural differences in some areas. However,

the programming interface (MIPS I ISA) remained unchanged, allowing compatibility between

the different models.

In the end, Sony commissioned LSI to produce the CPU package for the PlayStation. The

Japanese company chose the CW33300 core, made some modifications, and combined it with

other blocks to create the chip that would be used on the motherboard of the PlayStation console.

30

3.3.3 Coprocessors Analysis

System Control Coprocessor

Identified as CP0, the System Control Coprocessor is a common element of MIPS CPUs. It

controls the cache implementation, allowing direct access to the Scratchpad and Instruction

Cache. Moreover, it is also responsible for managing interrupts, exceptions, and breakpoints,

the latter being useful during the debug process.

Geometry Transformation Engine

The ”CP2” or Geometry Transformation Engine (GTE) is a math processor that accelerates

vector and matrix calculations. It offers operations useful for 3D graphics such as:

• Multiplication and addition of vectors or matrices

• Perspective transformations

• Clipping operations

• Interpolation functions

• Functions for lighting and color operations

Motion Decoder

The task of the Motion Decoder, also known as ”MDEC” or ”Macroblock Decoder”, is to

decompress ”Macroblock” into a format understandable by the GPU. A Macroblock is a data

structure that represents an image with a coding similar to that of the JPEG format.

MDEC decompresses bitmap images made up of 8x8 pixels at 24 bpp (bits per pixel) at a time.

This allows it to stream full-motion video (FMV) with a resolution of 320x240 px at 30 frames

per second. DMA (Direct Memory Access) is used to transfer the compressed data from the

CD-ROM to the RAM and then to the MDEC. The path is also followed in reverse, but in this

case, the destination is the VRAM.

The Missing Unit

Unfortunately, Sony did not provide the SoC with a CP1, that is, a ”Floating Point Unit” (FPU).

This does not mean that the CPU cannot perform arithmetic operations with decimal numbers,

it simply cannot do it fast or accurately enough.

Game logics that include operations such as physics implementation and collision detection

can still be managed using ”Fixed-point” arithmetic. With this system, decimal numbers are

31

represented with a fixed number of decimals, which results in a loss of precision after some

operations. A deeper insight into this topic will be covered in chapter 5.6.

3.3.4 Memory with Addressable Access

When talking about memory, it can be conceived as a one-dimensional array of addresses, where

each address corresponds to a memory location. Each memory address is represented by a 32-bit

number, but each address refers to a single unit of memory, namely a byte.

To represent these addresses, hexadecimal notation is used, allowing a more compact reading of

the numbers within the addresses themselves.

Figure 3.21: Graphic representation of PlayStation memory

The question that arises spontaneously is: how many addresses are available?

The PlayStation’s address bus is 32 bits, which allows addressing a maximum of 232 bytes of

memory, equal to 4 GB. In this context, it does not refer exclusively to RAM, but to the entire

memory of the PlayStation system.

In modern systems, CPUs and operating systems use virtual memory, which allows the use

of virtual addresses that do not directly correspond to physical memory. These addresses

are managed by the operating system and mapped to physical addresses through a memory

management unit (MMU). However, in the case of PlayStation, the absence of an MMU means

that virtual memory is not used, but only physical memory. The hardware is not designed to

abstract addresses through a memory management system.

Endianess Concept

In memory management, CPUs adopt different approaches for byte ordering, choosing different

modes to save data in memory. Sources: [78].

32

A useful example to illustrate this variation is saving a hexadecimal number, for example,

0x12345678. An intuitive way to represent it in memory might be to save it in order from left to

right: the first byte would be 0x12, followed by 0x34, 0x56, and finally 0x78. This approach is

known as Big Endian, where the most significant byte (MSB) is saved first compared to the least

significant byte (LSB). Some architectures, like the Motorola 68000 family, adopt this mode of

representation. Sources: [79].

PlayStation, on the other hand, uses a different approach, called Little Endian. In this case, the

least significant byte is saved first, followed by the others in increasing order of significance.

Returning to the example of the number 0x12345678, the order of saving in memory would be

0x78, 0x56, 0x34, and finally 0x12. The MIPS R300 CPU, used in the PlayStation, is configured

to adopt the Little Endian format.

Figure 3.22: Example of byte ordering

[34]

It is important to note that MIPS architectures, in general, do not impose a mandatory endianess.

Many MIPS processors can be configured to operate in either Big Endian or Little Endian mode.

However, in the specific case of PlayStation, the CPU is designed to use exclusively the Little

Endian format, where the least significant byte of a number is saved first in memory.

Memory Mapping

A crucial aspect in systems like PlayStation is memory mapping, which associates memory

addresses with various hardware components. The CPU needs to directly access devices like

I/O ports and peripherals to interact with the system. This is done by mapping these devices to

specific memory addresses.

33

For example, to access the GPU, check the status of the CD Controller, or read from RAM, it

is necessary that these devices have defined memory addresses. This way, the read and write

operations are simplified, improving the efficiency of communication between the CPU and

hardware.

Table 3.2: PlayStation Memory Map pt.1
Description KUSEG KSEG0 KSEG1 Space

Main RAM (first 64K reserved for BIOS) 00000000h 80000000h A0000000h 2048K

Expansion Region 1 (ROM/RAM) 1F000000h 9F000000h BF000000h 8192K

Scratchpad (D-Cache used as Fast RAM) 1F800000h 9F800000h – 1K

I/O Ports 1F801000h 9F801000h BF801000h 8K

Expansion Region 2 (I/O Ports) 1F802000h 9F802000h BF802000h 8K

Expansion Region 3 (whatever purpose) 1FA00000h 9FA00000h BFA00000h 2048K

BIOS ROM (Kernel) (4096K max) 1FC00000h 9FC00000h BFC00000h 512K

Table 3.3: PlayStation Memory Map pt.2
Description KSEG2 Space

I/O Ports (Cache Control) FFFE0000h 0.5K

Table 3.4: Additional memory not mapped to the CPU bus
Size Description

1024K VRAM (Framebuffers, Textures, Palettes) (with 2KB Texture Cache)

512K Sound RAM (Capture Buffers, ADPCM Data, Reverb Workspace)

0.5K CDROM controller RAM

16.5K CDROM controller ROM (Firmware and Bootstrap for CPU MC68HC05)

32K CDROM Buffer (IC303) (32Kx8)

128K External Memories (Memory Card)

• Kernel Memory: KSEG1 is the normal physical memory (without cache), while KSEG0

is a copy of it (but with the cache enabled). KSEG2 is generally intended to contain the

kernel’s virtual memory but in the case of PSX contains the cache control I/O ports.

• User Memory: KUSEG is intended to contain 2 GB of virtual memory (on extended

MIPS processors) but PSX as has been reiterated previously does not support virtual

memory. In this case, KUSEG simply contains a copy of KSEG0/KSEG1 (in the first 512

MB). If you try to access memory in the remaining 1.5 GB you get an error.

• Code Cache: The Code Cache operates in the regions with cache (KUSEG and KSEG0).

• Data Cache (Scratchpad): MIPS CPUs usually have a Data Cache but in the case of

PSX Sony exploited this functionality differently, using it as a ”Scratchpad”. In other

words, the ”Data Cache” is mapped to a fixed memory position between 1F800000h and

1F8003FFh (thus used as ”Fast Ram”, rather than as a cache).

34

Table 3.5: KUSEG, KSEG0, KSEG1, and KSEG2 memory regions
Address Name Size Privileges Code-Cache Data-Cache

00000000h KUSEG 2048M Kernel/User Yes (Scratchpad)

80000000h KSEG0 512M Kernel Yes (Scratchpad)

A0000000h KSEG1 512M Kernel No No

C0000000h KSEG2 1024M Kernel (No code) No

• Memory Mirrors: The KUSEG, KSEG0, and KSEG1 regions of 512MB are mirror

images of each other. Within these regions, there are further mirrors:

– 2MB of RAM and 512K of BIOS ROM can be mirrored in specific memory areas,

with default active options for RAM and inactive for BIOS.

– The Expansion Hardware, if present, can be mirrored in the respective region, as

well as the seven DMA control registers (1F8010x8h mirrored in 1F8010xCh).

– The sizes of the RAM, BIOS, and Expansion regions can be configured via software,

and the Scratchpad is mirrored only in KUSEG and KSEG0, not in KSEG1.

Some examples of register usage can be:

- 0x1F801814 READ : Reads the GPU status

- 0x1F801814 WRITE : Sends commands to the GP1 (Display Control)

- 0x1F801820 WRITE : Sends commands to the MDEC

3.4 The PSX GPU

The GTE manages a significant part of the graphics pipeline, taking care of operations like

perspective transformation, which converts three-dimensional space into a two-dimensional

plane following the camera’s perspective, and lighting processing. The data obtained is then

transferred to Sony’s proprietary GPU for rendering.

35

Figure 3.23: Graphics processor (GPU) used in the SCPH-100X series of the Sony PlayStation

[35]

3.4.1 VRAM

The system’s VRAM, with a capacity of 1 MB, is used to store the frame buffer, textures, and

resources necessary for the GPU to process the scene. The CPU can use DMA to transfer data

to this memory area.

In summary, the CPU provides the GPU with geometric data, such as vertices, which may

include rendering requests, setting changes, or VRAM manipulations.

The GPU, responsible for drawing the geometry, performs various processes including applying

clipping algorithms to exclude polygons that are outside the camera’s field of view.

At the end of its operations, the result is transferred from the GPU to the frame buffer of the

VRAM, from where the video encoder takes care of its transmission to the screen.

Figure 3.24: Graphic layout of the VRAM

3.4.2 Video Outputs

• AV Multi Out: Supported all previous signals, except RFU, and included RGB and a 5+

Volt power line.

• RCA: Provided composite video signals.

• S-Video: Allowed the output of Luma + Sync (combined) and Chroma.

36

• RFU DC: Designed for connection to an RF modulator, was eliminated shortly after

launch.

The subsequent revisions of the console simplified this configuration, progressively eliminating

all ports except the AV Multi Out.

3.5 The PSX SPU

Sony’s Sound Processing Unit (SPU) takes care of the audio component of PlayStation. This

chip supports 24 channels of 16-bit ADPCM samples with a sampling rate of 44.1 kHz (Standard

audio quality for CDs).

Figure 3.25: Layout of the Sound Processing Unit. Image taken from the original documentation.

This chip offers the following functionalities :

• Pitch Modulation: Allows automatic alteration of the pitch of audio tracks, useful in

transitioning from one track to another.

• Frequency modulation: Allows alteration of the track frequency.

• ADSR Envelope: Package of audio properties available to modulate the amplitude.

• Looping: Allows the repetition of the track in a loop.

• Digital reverb: Digital simulation of reverberation in a given environment.

PlayStation has 512 KB of DRAM (Sound Ram) available as audio buffer. The use of this

memory is allowed only to the CPU via DMA and to the CD controller. 4KB are reserved for

the SPU to process audio tracks from the CD while the remaining 508 KB are used by games to

store samples. If reverb is activated, the latter amount is further reduced.

37

The CD controller can directly send samples to the audio mixer, without having to go through

the DRAM or involve the CPU. Moreover, they can be compressed with the ’XA’ encoding,

which the SPU can decode in real-time.

Furthermore, thanks to the large amount of space available on CD-ROMs, the music tracks can

be sent directly to the audio chip. An operation that, in the past, was not possible due to the space

and hardware limitations of the previous generation consoles, which were forced to rearrange

the tracks in sequences or to use predefined waveforms.

3.6 Management of PSX I/O Interfaces

3.6.1 CD Module

The section that manages the CD drive can be considered as a computer integrated within the

console. This subsystem is composed of the following elements:

• DSP (Digital Signal Processing): controls the motor and laser of the unit, as well as

processes the RF signal of the latter.

• SUB-CPU: a CPU made up of a Motorola 68HC05 microcontroller, 512 B of RAM, and

16 KB of ROM. In short, the Sub-CPU executes a local program stored in ROM and

controls the DSP. This program checks the integrity and originality of the disc.

• CD-Controller: acts as an intermediary between the CD Subsystem and the rest of the

console, receiving commands from the main CPU in FIFO mode. Communicates directly

with the Sub-CPU and receives CD data from the DSP. Additionally, it integrates a DMA

unit and is connected to the SPU to allow direct audio streaming.

• SRAM: 32 KB of memory connected to the controller, used as a buffer for reading data

from the disc.

38

Figure 3.26: CD subsystem of PlayStation

[33]

3.6.2 Front Ports

The PlayStation controller and Memory Card slots are electrically identical, so the address of

each one is permanently coded. Sony changed the physical shape of the ports to avoid confusion

and connection errors.

Communication with these devices occurs via a serial interface. The commands sent to the

console are addressed to one of the two slots (respectively ”mem. card 0” and ”controller 0” /

”mem. card 1” and ”controller 1”). Afterwards, both accessories are assigned an ID allowing the

console to distinguish the two types of devices (memory card or controller) and to concentrate

operations on the requested one.

This similarity between the two accessories, with completely different uses, caused significant

bugs for developers at the time. Dave Baggett, working on Crash Bandicoot, discovered that a

hardware interference between the controller and memory card, caused data corruption, leading

Sony to acknowledge the problem. Sources: [80].

3.6.3 Rear Ports

As mentioned in chapter 3.2.5, the SCPH-1000 model has two I/O ports, a Serial and a Parallel

one. These ports were then removed in later models due to lack of use and because they could

be used to bypass the copy protection system.

39

Part II

Development and Programming

Fundamentals on PS1

40

Chapter 4

Programming in MIPS Assembly

This section introduces the fundamentals of MIPS Assembly programming in relation to the

PSX. Topics such as memory manipulation, inserting values into registers, and familiarization

with basic instructions will be covered. This language is essential in this context as it allows

direct communication with the PlayStation CPU, executing low-level operations that directly

interact with the hardware.

It is worth emphasizing that the overview will be general in nature, as the C language will

primarily be used for the development of demos. Nonetheless, addressing this topic is considered

important.

4.1 The 32 General-Purpose Registers

The R3000 SoC registers can be divided into general-purpose registers and ”special” registers.

One of these is the Program Counter (PC), a special processor register that contains the address

of the next instruction to be executed. In this chip, it is automatically incremented during code

execution, pointing to the next instruction in the sequence.

The general-purpose registers of this processor consist of 32 registers, each 32 bits wide, with

a specific use. When developing assembly code, these registers are not simply called R1, R2,

etc., but are identified by more understandable code names or aliases for programmers. They

are used to store data, addresses, and intermediate results during the execution of a program.

They are essential for performing arithmetic and logical operations, managing the passing of

parameters in subroutines, and manipulating memory addresses. The use of general-purpose

registers allows the processor to quickly access the necessary information without having to

interact with the main memory, thus improving system performance. Sources: [72].

41

Register # Alias Description

0 Zero Constant zero (fixed value)

1 AT Reserved for the assembler

2 V0 Function return value

3 V1 Return value (for double type)

4 A0 First function argument

5 A1 Second function argument

6 A2 Third function argument

7 A3 Fourth function argument

8 T0 Temporary value

9 T1 Temporary value

10 T2 Temporary value

11 T3 Temporary value

12 T4 Temporary value

13 T5 Temporary value

14 T6 Temporary value

15 T7 Temporary value

16 S0 Saved register (preserved)

17 S1 Saved register (preserved)

18 S2 Saved register (preserved)

19 S3 Saved register (preserved)

20 S4 Saved register (preserved)

21 S5 Saved register (preserved)

22 S6 Saved register (preserved)

23 S7 Saved register (preserved)

24 T8 Temporary value

25 T9 Temporary value

26 K0 Reserved for the kernel

27 K1 Reserved for the kernel

28 GP Global pointer

29 SP Stack pointer

30 FP Frame pointer

31 RA Return address

Table 4.1: General-purpose registers of the R3000 SoC

Zero Register This register constantly contains the value 0 and cannot be modified. It is used

to simplify operations that require this value, avoiding the need to explicitly load the value into

another register.

AT Register The AT register is used as a workspace by the assembler and is reserved (thus

cannot be used by the programmer or the C compiler).

SP and FP Registers The R3000 processor does not have the concept of a stack. Therefore,

the compiler creates its own stack by storing a pointer in the SP register. To make function

frames (areas for automatic/local variables and workspace) efficient, the initial address of the

42

frame is stored in the FP register, calculated from SP. During module activation, FP is set to the

same value as SP.

A0, A1, A2, A3 Registers Reserved for the arguments of C language functions. If a function

has up to four arguments, they are stored in registers A0-A3. If there are five or more arguments,

they are stored on the stack; however, the first four arguments are still passed through the

registers, while the stack space for them remains unused.

RA Register In this processor, calls to subroutines are managed using jump instructions that

save the return address in a special register, the RA register. This allows the program to know

where to return after executing a subroutine.

GP Register For efficient access with 16-bit offsets, the compiler groups variables up to 64

KB in an area called the ”bss section” and stores the central address in the GP register. This

allows accessing variables with short instructions; the GP remains constant in the module.

4.2 Elementary MIPS Instructions

In assembly code, instructions have a fixed length of 32 bits and define the operations that the

CPU must perform. This section will analyze the main operations.

Sources: [74] [81].

4.2.1 Data Transfer Instructions

These instructions are fundamental for managing data in registers. Keep in mind that each

register has a size of 4 bytes, or 32 bits.

Instruction Example Description

li li $t0, 10 Load an immediate value (a constant) into the register

($t0 = 10).

la la $t1, var Load the address of a variable ($t1 = address of var).

lui lui $t2, 0x1F80 Load the immediate value 0x1F80 into the upper 16 bits

of register $t2, setting the lower 16 bits to zero ($t2 =

0x1F800000).

move move $t3, $t4 Copy the value from one register to another ($t3 = $t4).

Table 4.2: Instructions li, la, lui and move with examples and descriptions.

43

4.2.2 Load Instructions

In the context of data loading, these can be managed in different sizes:

• BYTE: 8 bits

• HALF: 16 bits

• WORD: 32 bits

• DWORD: 64 bits

If one wanted to make a comparison between the data formats of MIPS and the data types of the

C language, the following correspondences could be highlighted:

1 int main(){

2 char v1; // 1 byte OR 8 bits

3 short v2; // 2 bytes OR 16 bits

4 int v3; // 4 bytes OR 32 bits

5 long v4; // 4 bytes OR 32 bits

6 long long v5; // 8 bytes OR 64 bits

7 }

Load instructions read data from memory and copy them into a register. These operations serve

to transfer information from the main memory (RAM) to the CPU registers to allow processing.

It is not possible to load a DWORD as the PSX SoC uses a 32-bit architecture.

Instruction Example Description

lw lw $t0, 0($t1) Load a word (32 bit) from memory at address $t1 + 0

into register $t0.

lh lh $t0, 4($t1) Load a halfword (16 bit, sign-extended) from memory

at address $t1 + 4 into register $t0.

lb lb $t0, 8($t1) Load a byte (8 bit, sign-extended) from memory at ad-

dress $t1 + 8 into register $t0.

lhu lhu $t0, 4($t1) Load an unsigned halfword (16 bit) from memory at

address $t1 + 4 into register $t0.

lbu lbu $t0, 8($t1) Load an unsigned byte (8 bit) from memory at address

$t1 + 8 into register $t0.

Table 4.3: Load instructions: lw, lh, lb, lhu, lbu with examples and descriptions.

44

4.2.3 Store Instructions

Store instructions transfer data from a register to a memory address. These operations are used

to transfer calculated results from the CPU registers to the main memory (RAM), where they

can be stored or used by other parts of the program.

Instruction Example Description

sw sw $t0, 0($t1) Store a word (32 bit) from register $t0 to memory address

$t1 + 0.

sh sh $t0, 4($t1) Store a halfword (16 bit) from register $t0 to memory

address $t1 + 4.

sb sb $t0, 8($t1) Store a byte (8 bit) from register $t0 to memory address

$t1 + 8.

Table 4.4: Store instructions: sw, sh, sb with examples and descriptions.

4.2.4 Differences between Load and Store

Type Purpose Example Direction

Load Read data from memory to registers lw $t0, 0($t1) Memory → Register

Store Write data from registers to memory sw $t0, 0($t1) Register → Memory

Table 4.5: Summary of the difference between Load and Store operations.

4.2.5 Jump Instructions

These instructions alter the program’s execution flow, allowing a jump to another position in the

code. They are used to implement control structures such as loops, function calls, and returns

from subroutines.

Instruction Example Description

j j target Unconditionally jump to the label target.

jal jal target Jump to the label target and save the return address in

the $ra register.

jr jr $t0 Jump to the address stored in the $t0 register.

jalr jalr $t1, $t0 Jump to the address in $t0 and save the return address in

$t1.

Table 4.6: Jump instructions in MIPS with examples and descriptions.

45

4.2.6 Branch Instructions

These instructions are used to implement control structures such as conditional blocks (if) and

loops (for, while).

Instruction Example Description

beq beq $t0, $t1, label Jump to label if $t0 is equal to $t1.

bne bne $t0, $t1, label Jump to label if $t0 is different from $t1.

blez blez $t0, label Jump to label if $t0 is less than or equal to zero

(signed).

bgez bgez $t0, label Jump to label if $t0 is greater than or equal to

zero (signed).

bltz bltz $t0, label Jump to label if $t0 is less than zero (signed).

bgtz bgtz $t0, label Jump to label if $t0 is greater than zero (signed).

blt blt $t0, $t1, label Jump to label if $t0 is less than $t1 (signed).

ble ble $t0, $t1, label Jump to label if $t0 is less than or equal to $t1

(signed).

Table 4.7: Branch instructions in MIPS with examples and descriptions.

4.2.7 The NOP Concept

In software written for MIPS architectures, it is common practice to insert a NOP (No Operation)

instruction immediately after a Branch or Jump. This is due to the internal functioning of the

MIPS processor pipeline, which divides instruction execution into parallel phases.

As will be discussed in chapter 4.5, the processor pipeline requires time to determine the exact

destination address of a branch or jump. During this time, the CPU might incorrectly attempt

to execute the subsequent instructions before knowing where to actually jump.

This behavior is known as the ”branch delay slot”.

The NOP instruction, which has no practical effect, is inserted to occupy the branch delay slot,

preventing unintended instructions from being executed. Alternatively, the slot can be used to

insert a useful instruction that does not interfere with the jump.

1 beq $t0, $t1, branch_label // Branch to branch_label if $t0 == $t1

2 nop // NOP instruction for delay slot

3 // Other instructions

4 branch_label:

5 // Code executed if the condition is true

Codice 4.1: Example with conditional branch instruction

46

1 j target_label ; Salta incondizionatamente a target_label

2 nop ; Istruzione NOP per gestire il delay slot

3 ; Altre istruzioni

4 target_label:

5 ; Codice eseguito dopo il salto

Codice 4.2: Example with jump instruction

4.2.8 Arithmetical Instructions

Instruction Example Description

add add $t0, $t1, $t2 Adds the values in registers $t1 and $t2, storing the

result in $t0. Generates an exception in case of

overflow.

addu addu $t0, $t1, $t2 Adds the values in registers $t1 and $t2 without

generating exceptions for overflow, storing the result

in $t0.

addi addi $t0, $t1, 10 Adds the immediate value 10 to the content of $t1,

storing the result in $t0. Generates an exception in

case of overflow.

addiu addiu $t0, $t1, 10 Adds the immediate value 10 to the content of $t1

without generating exceptions for overflow, storing

the result in $t0.

sub sub $t0, $t1, $t2 Subtracts the value in $t2 from that in $t1, storing

the result in $t0. Generates an exception in case of

overflow.

subu subu $t0, $t1, $t2 Subtracts the value in $t2 from that in $t1 without

generating exceptions for overflow, storing the result

in $t0.

mult mult $t1, $t2 Multiplies the values in registers $t1 and $t2, storing

the 64-bit result in the special registers HI and LO.

multu multu $t1, $t2 Multiplies the unsigned values in registers $t1 and

$t2, storing the 64-bit result in the special registers

HI and LO.

div div $t1, $t2 Divides the value in $t1 by that in $t2, storing the

quotient in LO and the remainder in HI.

divu divu $t1, $t2 Divides the unsigned value in $t1 by that in $t2,

storing the quotient in LO and the remainder in HI.

Table 4.8: Arithmetic instructions in MIPS with examples and descriptions.

The multiplication and division operations in MIPS save their results in two special registers,

HI and LO. To access the values contained in these registers, the mfhi and mflo instructions can

be used.

47

1 ; Example of using HI and LO registers

2 li $t0, 10 ; Load 10 into $t0

3 li $t1, 20 ; Load 20 into $t1

4

5 mult $t0, $t1 ; Multiply $t0 and $t1; result goes to HI and LO

6 mflo $t2 ; Copy the value of LO into $t2

7 mfhi $t3 ; Copy the value of HI into $t3

8

9 div $t0, $t1 ; Divide $t0 by $t1; quotient in LO, remainder in HI

10 mflo $t4 ; Copy the quotient (LO) into $t4

11 mfhi $t5 ; Copy the remainder (HI) into $t5

Codice 4.3: Example of using mfhi and mflo operations

4.3 Console Emulation

This section will use two tools to execute assembly code on a PlayStation emulator. The first

tool is ARMIPS, an assembler designed to generate executable binary code for the PSX [82].

The second is a PlayStation emulator, PCSX-Redux [83].

4.3.1 Programming Example

Below is a simple program, written in MIPS Assembly language, for calculating the factorial

of a number. The development of this software is based on the information provided in the

previous chapters.

The following code will be saved in .s format, a commonly used extension for assembly source

files.

1 .psx ; Indica all assembler l’architettura di riferimento

2 .create "Fattoriale.bin", 0x80010000

3 .org 0x80010000 ; Creazione di un file.bin in questo preciso punto

d’ingresso

4 Main:

5 li $t0, 6; num = 6 (numero per cui calcolare il fattoriale)

6 li $t3, 1; temp = 1 (valore temporaneo)

7 li $t4, 1; sum = 1 (somma intermedia)

8 li $t1, 1; i = 1 (contatore esterno)

9 OuterLoop:

10 ble $t0, $t1, EndLoop; Se i > num, esce dal ciclo esterno

11 nop

12 move $t4, $zero; sum = 0 (reset della somma)

13 move $t2, $zero; j = 0 (reset del contatore interno)

14 InnerLoop:

48

15 blt $t1, $t2, EndInnerLoop ; Se j >= i, esce dal ciclo interno

16 nop

17 add $t4, $t4, $t3 ; sum += temp (accumula temp in sum)

18 addi $t2, $t2, 1 ; j++

19 j InnerLoop ; Torna all inizio del ciclo interno

20 nop

21 EndInnerLoop:

22 move $t3, $t4 ; temp = sum (aggiorna temp)

23 addi $t1, $t1, 1 ; i++

24 j OuterLoop ; Torna all’inizio del ciclo esterno

25 nop

26 EndLoop:

27 move $v0, $t4 ; Salva il risultato finale in $v0

28 InfiniteLoop:

29 j InfiniteLoop ; Ciclo infinito per terminare il programma in modo sicuro

30 nop

31 .close

Codice 4.4: Calculating the factorial of a number in MIPS Assembly

4.3.2 The PS-EXE Format

Once the code is assembled, a .bin file will be created, representing raw binary data.

Before testing the code on an emulator or a PlayStation console, conversion to a compatible

format is necessary. The PlayStation BIOS accepts files in ’PSX-EXE’ format. This format

represents a 32-bit MIPS executable specific to the PS1 and includes both the code and the data

necessary for execution. Sources: [84].

To generate a file in PSX-EXE format, a Python script can be used [85] that converts, for

example, the Fattoriale.bin file into the corresponding Fattoriale.ps-exe.

Loading the .PS-EXE file into the emulator displays the following information:

• Red box: General registers.

• Yellow box: Memory position where the program was loaded.

• Green box: Program code. The yellow arrow highlights the starting point of execution,

while the red dot represents a breakpoint, inserted to make the result of the operations

readable after execution.

Once the program is executed, calculating the factorial of the number 6, the general register

$v0 will contain the hexadecimal value 000002d0, corresponding to the decimal value 720,

confirming that the calculation was performed correctly.

49

Figure 4.1: Screen taken from the PSX emulator before execution

Figure 4.2: Screen taken from the PSX emulator after execution

50

4.3.3 The Pseudo-Instruction Concept

In the code displayed on the emulator (figure 4.1), some differences can be seen compared to

the code shown in chapter 4.2.1. This discrepancy is due to the use of pseudo-instructions in

the MIPS Assembly language. The assembler translates these pseudo-instructions into one or

more actual instructions from the MIPS instruction set. It is important to note that, although

pseudo-instructions simplify programming, they may result in the execution of more machine

instructions than a single instruction, affecting the software’s efficiency. Sources: [86].

4.3.4 The Sub-Routine Concept

As described in the paragraph dedicated to ”Jump Instructions”, subroutines can be used to

improve code structure, making it more readable and flexible. In assembly language, subroutines

are similar to functions in high-level programming languages. Below is a version of the factorial

calculation program that uses subroutines. Sources: [87].

1 .psx // Specify target architecture (PlayStation)

2 .create "factorial.bin", 0x80010000 // Create a binary file with entry

point at 0x80010000

3

4 .org 0x80010000 // Set code origin to address 0x80010000

5

6 Main:

7 li $a0 , 0x0006 // Load number 6 into register $a0 (number to

calculate factorial for)

8 jal Factorial // Call the Factorial subroutine and save return

address in $ra

9 nop // NOP for jump delay slot

10

11 LoopForever:

12 j LoopForever // Jump to LoopForever , creating an infinite loop

13 nop // NOP for jump delay slot

14

15 Factorial:

16 li $t3 , 0x0001 // Initialize $t3 (temp) to 1

17 li $t4 , 0x0001 // Initialize $t4 (sum) to 1

18 li $t1 , 0x0001 // Initialize $t1 (i) to 1

19

20 OuterWhile:

21 ble $a0 , $t1 , EndOuterWhile // If $t1 (i) >= $a0 (NUM), exit outer loop

22 nop // NOP for delay slot

23 move $t4 , $zero // Set $t4 (sum) to 0

24 move $t2 , $zero // Set $t2 (j) to 0

25

26 InnerWhile:

51

27 blt $t1, $t2, EndInnerWhile // If $t2 (j) >= $t1 (i), exit inner loop

28 nop // NOP for delay slot

29 add $t4, $t4, $t3 // Add $t3 (temp) to $t4 (sum)

30 addi $t2, $t2, 0x0001 // Increment $t2 (j) by 1

31 b InnerWhile // Jump to start of inner loop

32 nop // NOP for delay slot

33

34 EndInnerWhile:

35 move $t3 , $t4 // Update $t3 (temp) with value of $t4 (sum)

36 addi $t1 , $t1 , 0x0001 // Increment $t1 (i) by 1

37 b OuterWhile // Jump to start of outer loop

38 nop // NOP for delay slot

39

40 EndOuterWhile:

41 move $v0 , $t4 // Save result (factorial) in $v0

42 jr $ra // Return to address saved in $ra (subroutine

finished)

43

44 .close // Close the binary file

Codice 4.5: Calculating the factorial using Subroutine

4.4 Handling Binary Data

4.4.1 Managing Negative Numbers

PlayStation, as a digital machine, operates using binary data represented by zeroes and ones.

Data that are generally organized in bytes. As described in the basic operations of chapter 4.2,

it is possible to handle data as either signed (with sign) or unsigned (without sign).

A byte always consists of 8 bits, but its interpretation can vary. For example, the binary

number 01101101 corresponds to the value 109 in decimal as a positive value. To perform this

conversion, 2= is summed for each bit set to one, where n represents the bit position (starting

from 0 for the least significant bit).

An unsigned byte (8 bits) represents values from 0 to 255, an unsigned halfword (16 bits) from

0 to 65,535, and an unsigned word (32 bits) from 0 to 4,294,967,295.

In the case of signed data, the most significant bit (the leftmost bit) is reserved to represent

the sign. A value of 0 will indicate a positive number, while 1 indicates a negative number.

However, this representation modifies the previous logic of calculation, and that is why the

concept of ”two’s complement” is adopted. Sources: [88].

With ”two’s complement”, the leftmost bit represents a negative value equal to −2(=−1) , where n

52

is the total number of bits. The rest of the bits contribute to the total value as positive powers of

2. Thus a signed byte can represent values from -128 to +127. A signed halfword can represent

values from -32,768 to +32,767. A signed word can represent values from -2,147,483,648 to

+2,147,483,647.

Some fundamental properties of this representation include the fact that zero is always indicated

with all bits set to 0, the most significant bit determines the sign of the number, and the operations

of addition and subtraction work identically for both signed and unsigned numbers.

4.4.2 Sign Extension

This procedure ensures that the value of the number remains consistent regardless of the data

size. It is emphasized that the programmer does not have to manage these operations manually,

as the MIPS ISA automatically performs them during operations that require this extension.

In the context of signed numbers, a 32-bit architecture does not limit itself to handling single

bytes, but also includes the already mentioned halfword (16 bit) and word (32 bit). When a

signed number is extended from 8 bits to 16 bits, it is essential to preserve its sign: positive

numbers are extended by filling the most significant bits (to the left) with zeroes, while for

negative numbers, the most significant bits are filled with ones. Sources: [81].

Figure 4.3: Examples of sign extension

[36]

53

4.4.3 Logical Operations

Logical operations are useful tools for manipulating and analyzing binary data. The most

commonly used operations in this context are the following. Sources: [81][74].

Logical AND

The AND operation returns a true result only if both inputs are true. This property lends

itself particularly well to the concept of ”masking”, an operation that allows extracting specific

information by applying a binary mask.

Figure 4.4: Example of ”masking”

[37]

For example, to isolate the values related to the RGB channels (ALPHA, RED, GREEN, BLUE),

each represented by 8 bits, a mask can be applied that sets to zero the bits to be hidden and to

one those of interest.

Logical OR

The OR operation returns a true result if at least one of the two inputs is true.

For example, OR can be used to activate specific bits in a binary sequence, keeping unchanged

those already set. This is particularly relevant when flags in a binary mask need to be set without

altering their current state.

Exclusive OR (XOR)

The XOR operation is similar to the previous OR, with the difference that it returns a false

result when both inputs are true. This property is useful in applications that require verifying

differences between two binary values.

54

Instruction Example Description

and and $t0, $t1, $t2 Performs a bitwise AND operation between the

registers $t1 and $t2, storing the result in $t0.

andi andi $t0, $t1, 0xFF Performs a bitwise AND operation between the

register $t1 and the immediate value 0xFF, saving

the result in $t0.

or or $t0, $t1, $t2 Performs a bitwise OR operation between the reg-

isters $t1 and $t2, storing the result in $t0.

ori ori $t0, $t1, 0xFF Performs a bitwise OR operation between the reg-

ister $t1 and the immediate value 0xFF, saving the

result in $t0.

xor xor $t0, $t1, $t2 Performs a bitwise XOR operation between the reg-

isters $t1 and $t2, storing the result in $t0.

xori xori $t0, $t1, 0xFF Performs a bitwise XOR operation between the reg-

ister $t1 and the immediate value 0xFF, saving the

result in $t0.

Table 4.9: Logical instructions AND, OR, and XOR with examples and descriptions.

4.4.4 The Bit-Shifting Concept

Bit shifting allows moving the bits of a value to the right or left, or rotating them in the same

manner.

This concept is applied in operations such as multiplications and divisions, where a left shift is

equivalent to multiplying a number by a power of 2, while a right shift corresponds to dividing

it by a power of 2.

The shift operation is particularly advantageous because it is significantly faster and more

efficient than traditional multiplications or divisions. This technique will be further explored in

the chapter dedicated to ”Fixed Point Math”.

Shift Rotation

In the case of a right shift, the least significant bit (the rightmost one) is lost, while a zero is

inserted in the most significant position (to the left). Conversely, with a left shift, the most

significant bit is eliminated, and a zero is added as the new least significant bit.

During a rotation, the bits are not lost. The bit removed from one end is reinserted at the opposite

end, creating a rotation effect. In the MIPS R3000 environment, the concept of rotation can

be simulated, but there is no dedicated instruction for it, unlike shift operations. Sources: [74]

[81].

55

Preserving the Sign

When shifting signed numbers, the bit representing the sign can be lost. To address this issue,

arithmetic shifts are used, which preserve the sign by keeping the most significant bit unchanged

during the shift. However, this consideration is only valid for right shifts. In the case of left

shifts, both types behave the same way, as the MSB is simply shifted out of range without the

need to preserve the sign. It should also be noted that there is no arithmetic version of rotation, as

this operation implies reusing the bits lost during the operation, making the distinction between

signed or unsigned values irrelevant. Sources: [89].

Figure 4.5: Examples of bit shifting

[38]

Instruction Example Description

sll sll $t0, $t1, 2 Performs a logical left shift on the bits of $t1 by 2

positions, storing the result in $t0.

srl srl $t0, $t1, 2 Performs a logical right shift on the bits of $t1 by 2

positions, filling the most significant bits with zeroes

and storing the result in $t0.

sra sra $t0, $t1, 2 Performs an arithmetic right shift on the bits of $t1

by 2 positions, preserving the sign, and stores the

result in $t0.

sllv sllv $t0, $t1, $t2 Performs a logical left shift on the bits of $t1 by

a number of positions specified by $t2, storing the

result in $t0.

srlv srlv $t0, $t1, $t2 Performs a logical right shift on the bits of $t1 by a

number of positions specified by $t2, filling the most

significant bits with zeroes and storing the result in

$t0.

srav srav $t0, $t1, $t2 Performs an arithmetic right shift on the bits of $t1

by a number of positions specified by $t2, preserving

the sign, and stores the result in $t0.

Table 4.10: Shift and rotation instructions in MIPS with examples and descriptions.

56

4.5 In-depth Study of the MIPS Pipeline

As mentioned in chapters 3.3.1 and 4.2.7, this chapter will explore the functioning of the RISC

MIPS R3000 processor, with a particular focus on the five-stage pipeline.

Sources: [90][91][92].

4.5.1 MIPS Pipeline Structure

In the processors of the previous generation of consoles, lacking a pipeline, instruction execution

occurred sequentially, completing an instruction entirely before starting a new one.

The introduction of the pipeline in RISC processors, such as the MIPS R3000, fragments

operations into smaller and overlapping stages, improving execution efficiency. Each instruction

goes through five main stages: fetch, decode, execute, memory, and write.

This design allows for overlapping stages, enabling the processor to execute multiple instructions

simultaneously.

In theory, a processor with a pipeline can approach a performance of one instruction per clock

cycle (1 CPI), even though each instruction typically requires three to five cycles.

This approach significantly increases the processor’s efficiency but can introduce synchronization

problems if not managed correctly.

Figure 4.6: Pipeline representation

[39]

57

4.5.2 Limits of the MIPS Pipeline

• Flow changes: Branch or jump instructions can cause problems because the immediately

following instruction, already in the pipeline, might be incorrectly executed before the

jump is actually made.

• Load delay: When loading a value from memory with instructions like lw (load word),

there might be an attempt to use the loaded value before it is fully available. This problem

does not occur with operations like li (load immediate), which happen very quickly.

4.5.3 Managing Delay Slots

To solve these problems, the MIPS pipeline introduces the concept of ”delay slot”, a solution

adopted by the first RISC processors. In simple terms, operations that serve to ”consume” the

clock cycles necessary to complete the previous operation.

A common example is the use of the NOP (No Operation) instruction, explained in chapter 4.2.7,

which occupies the delay slot without performing any operation.

This instruction is a pseudo-instruction (see chapter 4.3.3) in the MIPS instruction set, equivalent

to an instruction that performs a logical left shift of 0 bits on the $r0 register.

Since $r0 is fixed at the value 0 and cannot be modified, the instruction has no effects, other than

consuming a clock cycle.

4.5.4 Optimizing Delay Slots

Although using NOP is the simplest solution, it is possible to fill delay slots with useful

instructions that do not depend on the previous operation, thus improving software efficiency.

Modern compilers, like those for the C language, automatically manage these optimizations,

relieving the programmer of this responsibility.

4.6 In-depth Study of the RISC Processor

In the previous chapters, the importance of the RISC architecture has been emphasized. But

what do the terms Reduced Instruction Set (RISC) and Complex Instruction Set (CISC) really

mean, and how does RISC differ from traditional CISC processors?

4.6.1 Historical Evolution and Context

Until the fifth generation of consoles, such as NES, Sega Genesis, Super Nintendo (SNES), and

Atari 2600, the processors used were mainly based on CISC architecture. These processors,

58

although flexible, often required many clock cycles to complete a single instruction. Towards

the end of the 1980s, a shift in design philosophy occurred with the introduction of RISC

architectures. This technological revolution led to the development of several families of

processors based on RISC. Among the major contributions of the time:

• Acorn Computers developed ARM processors.

• Sun Microsystems introduced the SPARC family.

• Apple, IBM, and Motorola created PowerPC processors.

• Silicon Graphics designed MIPS processors, mainly used in workstations dedicated to

computer graphics.

MIPS technology not only became the heart of the PlayStation processor but was also adopted

by competitors like Nintendo with its Nintendo 64 (Sources: [93]). This evolution marked

a transition to faster and more efficient processors, specifically designed for multitasking and

parallel processing. Sources: [73].

4.6.2 Differences between RISC and CISC

In CISC processors, instructions were designed to be more complex and powerful, often capable

of performing elaborate operations in a single pass.

This approach somewhat simplified the writing of assembly code, making it more intuitive for

programmers. However, the complexity of the instructions often required more clock cycles for

their execution, significantly limiting the speed compared to the leaner and faster approach of

RISC architectures.

RISC, on the other hand, adopts a minimalist approach with a reduced set of simple and fast

instructions. Some of the main features of RISC include:

• Few and simple addressing modes.

• Fixed-size instructions.

• Separation between load and store operations.

• Aim to achieve 1 cycle per instruction (1 CPI).

Although CISC instructions were more ”user-friendly”, the advantage of RISC is that modern

compilers, like those used for the PlayStation, automatically translate high-level code (e.g., in C

language) into efficient instructions for the RISC architecture.

59

4.6.3 Advantages of RISC Architecture

The adoption of RISC offered numerous benefits:

• Optimized instruction set: RISC instructions, being simpler and more uniform, can be

executed more quickly, reducing the complexity of the processor and improving overall

performance.

• More efficient pipeline: The regular structure of RISC instructions facilitates pipeline

implementation, allowing parallel execution of multiple instructions and greater through-

put.

• Flexibility in compilers: The simplicity of RISC instructions allows compilers to generate

more efficient code, optimizing the use of processor resources.

Such advantages have made RISC processors an ideal choice for devices requiring high perfor-

mance and low latency, like game consoles. Sources: [94][95].

4.7 Graphics System

After exploring the functioning of the CPU, it is appropriate to examine that of the GPU. As

discussed in chapters 3.2.3 and 3.4, this is a dedicated chip with access to two units of VRAM

of 512 KB each, for a total of 1 MB.

The GPU has its own registers, similar to those of the CPU, but designed for different purposes,

mainly related to graphics processing. It has access to the frame buffer, a portion of memory

dedicated within the VRAM, used for rendering images. It is important to emphasize that the

frame buffer is not directly accessible by the CPU, as it is not memory-mapped, which implies

that the interaction between the CPU and GPU occurs exclusively through specific commands.

Communication between the GPU and CPU occurs through ”packets” containing graphics

drawing and configuration instructions. These packets can be transmitted in two ways:

• Word by Word, packet after packet, single words of data are sent sequentially through

the GPU’s data port. A simple but less efficient approach.

• Via DMA. Data is transferred in bulk, using the DMA controller for faster and more

efficient communication.

Introduced in chapter 3.3.1, DMA allows components like GPU, SPU, CD-ROM drive, and

parallel port to access a dedicated DMA controller. This controller takes control of the main

bus allowing very fast data transfer. However, during its operation, the CPU is unable to access

the main bus, as it is entirely occupied by the ongoing transfer. Sources: [73] [72].

60

4.7.1 The Frame Buffer

The frame buffer is an essential component of the GPU, used to display frames on the screen

and store graphic resources such as textures, fonts, and color tables. It has a size of 1024x512

pixels and supports color depths of 16 to 24 bits.

Figure 4.7: Graphic representation of the Frame Buffer

[40]

The coordinate system of the frame buffer is defined by a rectangular area with the upper left

corner located at (0,0) and the lower right corner at (1023,511). Within this area, there is

freedom to place different graphic resources. However, a portion of the frame buffer must be

dedicated to the display area, a map that defines what will be visible on the screen.

Typically, two display areas are used through a concept called ”double buffering”, which helps

reduce flickering and improve visual fluidity by alternating buffers during rendering. This

concept will be further explored in the upcoming chapters. It is important to manage this

memory efficiently to avoid overloads and ensure visual quality.

61

Figure 4.8: Frame Buffer during the playback of Final Fantasy 7

[41]

The PlayStation GPU uses a coordinate system encoded in 11-bit units, where the values for X

and Y range from -1024 to 1023. Although the frame buffer size is limited to 1024x512 pixels,

it is possible to define an arbitrary drawing origin by setting an offset in the coordinates.

This allows the GPU to draw only within defined rectangular areas, avoiding rendering in

unwanted regions. The GPU’s automatic clipping ensures that drawings are confined to the

visible area, preventing visual errors. The concept of Clipping will be explored in a dedicated

chapter.

4.7.2 Display Configuration Parameters

The PlayStation GPU supports different configurations for the display, each with specific res-

olutions and characteristics. These parameters determine how graphic content is rendered and

displayed on the monitor. The main resolution configurations for the NTSC standard are listed

in the following table:

Each mode has specific implications, varying according to the chosen resolution. For example,

higher resolutions like 640x480 require more VRAM memory and GPU processing power,

reducing the available space for other graphic resources, such as textures or color maps. On the

other hand, modes with lower resolutions, such as 256x240, reduce the load on the GPU and

allow for greater availability of resources for graphic assets.

Another relevant aspect is the choice between interlaced and non-interlaced modes. Interlaced

modes allow for doubling the vertical resolution (e.g., from 240 to 480 lines), but may introduce

a visible and annoying flickering effect. Non-interlaced modes offer more stable images, but with

62

Mode Standard Resolution (NTSC) Notes

0 256(H) x 240(V) Non-interlaced

1 320 x 240 Non-interlaced

2 512 x 240 Non-interlaced

3 640 x 240 Non-interlaced

4 256 x 480 Interlaced

5 320 x 480 Interlaced

6 512 x 480 Interlaced

7 640 x 480 Interlaced

8 384 x 240 Non-interlaced

9 384 x 480 Interlaced

Table 4.11: Screen modes supported by the PlayStation GPU.

a lower vertical resolution. The chosen configuration depends on the type of graphic content

and the performance requirements of the game. Sources: [96].

Most games operate at native resolutions ranging from 256G224 in progressive mode to 640G480

in interlaced mode. The most commonly used resolution is 320G240. Lower resolutions offer

better performance, but some games exploit higher resolutions for certain sections or for the

entire gameplay. Sources: [97].

4.7.3 Color and Depth

PSX supports two color modes, each with specific characteristics: the 15-bit mode and the

24-bit mode. The choice of color mode depends on the balance between visual quality and GPU

processing capability.

15-bit Mode

Allows the display of a maximum of 32,768 colors. Although the number of available colors is

lower than in the 24-bit mode, the GPU performs color calculations using 24-bit precision.

Thanks to dithering, a technique that introduces visual noise to simulate smoother transitions

between colors, it is possible to achieve a visual quality close to ”true color” (24 bit).

The samples of red, green, and blue follow the typical behavior of colors defined in the RGB

space, while the STP (Special Transparency Processing) bit performs specific functions. De-

pending on the set transparency management mode, this bit determines whether pixels of a

certain color are to be considered transparent.

When transparency is active, pixels with the STP bit enabled are interpreted as transparent. A

special case is represented by black pixels (RGB 0,0,0), which PlayStation treats as transparent

by default, unless the STP bit is disabled.

63

24-bit Mode

The 24-bit mode allows the display of up to 16,777,216 colors, offering a complete color

representation. However, this mode has some significant limitations. The GPU can only display

image data that has already been transferred to the frame buffer, as it is unable to perform direct

drawing operations with 24-bit pixels.

Even in this mode, the coordinates and display positions in the frame buffer are still managed on

a 16-bit basis. For example, a 24-bit image with a resolution of 640G480 is treated in the frame

buffer as 960x480, to align with the 16-bit management. Additionally, the horizontal display

sizes must be multiples of 8, which implies that the minimum screen size in this mode is 8G2

pixels.

Figure 4.9: Above, the 24-bit mode. Below, the 16-bit mode.

[42]

64

Figure 4.10: 15-bit and 24-bit color modes

[43]

65

4.7.4 PSX Primitives

Concept of primitive in computer graphics

In computer graphics, a primitive represents the basic geometric unit used to build complex

models and images. Primitives include elements like points, lines, polygons, and are processed

by the GPU to represent graphic scenes on the screen.

A polygon, in particular, is a geometric figure composed of closed lines that enclose an area. A

triangle is considered the ideal primitive in 3D graphics because it possesses three fundamental

properties: it is convex, simple (its sides do not intersect), and planar (its vertices are coplanar).

This ensures greater stability and ease of calculation during rendering, eliminating ambiguities

that could arise with more complex polygons. Sources: [98].

Primitives supported by the console

The PSX GPU is designed to draw a series of fundamental primitives, including:

• Lines: Segments that connect two points and are used to represent outlines or simple

details.

• Flat-Shaded Polygons: Triangles and quadrilaterals with uniform coloring. It should be

noted that quadrilaterals, in the case of the PSX, are internally managed as two adjacent

triangles.

• Gouraud-Shaded Polygons: Polygons that use shading interpolated between the colors

of the vertices to create a gradient effect.

• Textured Polygons: Polygons onto which textures are applied to add graphic details and

enhance realism.

• Sprite/Tile: Two-dimensional images used mainly for moving objects or backgrounds.

66

Figure 4.11: Model: Crash

Bandicoot (about 500 polygons).

Figure 4.12: Model: Leon, Resi-

dent Evil 2 (about 730 polygons).

4.7.5 Packet Management and Communication between CPU and GPU

Communication between the CPU and GPU inside the PSX occurs through the sending of

structured packets, which contain commands and parameters necessary for managing rendering

and display control. These packets travel along buses of specific sizes, following a precise

hierarchy:

• The CPU, or DMA controller, sends 32-bit packets to the GPU.

• The GPU transfers 16-bit data to the VRAM.

• The VRAM, finally, sends 16-bit data to the Video Encoder, responsible for converting

the content for display.

As illustrated in figure 3.24 (chapter 3.4.1), this structure allows for a clear separation of tasks

between hardware components, ensuring an organized and optimized data flow.

Figure 4.13: Communication between CPU, GPU, VRAM, and Video Encoder

[44]

67

Structure and Destination of GPU Packets

The packets sent to the GPU are addressed to its two main control registers:

• GP0: used for rendering and accessing VRAM. This register manages commands related

to drawing graphic primitives.

• GP1: used for display configuration and graphic environment control.

Sending Packets to the GP0 Register

The packets sent to the GP0 register serve to manage rendering and primarily work with graphic

primitives, such as polygons, lines, and sprites. Each packet consists of a series of commands

and parameters, each containing specific information.

For example, to draw a flat-shaded polygon, the following packets need to be sent:

• Packet 1: command and color (format CCBBGGRR).

• Packet 2: coordinates of the first vertex (format YYYYXXXX).

• Packet 3: coordinates of the second vertex.

• Packet 4: coordinates of the third vertex.

• Packet 5: coordinates of the fourth vertex (if necessary).

Sending Packets to the GP1 Register

The packets sent to the GP1 register are responsible for display configuration. Each packet

contains an 8-bit command (MSB) and up to 24 bits of parameters (LSB). These packets follow

the COMMAND+PARAM (CCPPPPPP) format, where the most significant bits represent the

command and the remaining three bytes contain the parameters. Some examples of commands

are:

• 0x00: Reset the GPU.

• 0x03: Enable the display.

• 0x08: Configure the video mode.

4.7.6 First Example of Basic Rendering in MIPS Assembly

This example represents a simple rendering process. The code illustrates how to configure the

display, define the drawing area, and create graphic primitives such as triangles and quadrilater-

als.

68

The instructions interact directly with the GP0 and GP1 registers to manage rendering and

configure the graphic environment, showing how to send command packets to achieve graphic

output on the screen.

Figure 4.14: Screenshots taken from the emulator during the program execution. On the right,

it is possible to see how the frame buffer is being occupied.

69

1 .psx

2 .create "First_Rendering_Example.bin", 0x80010000

3 .org 0x80010000

4

5 IO_BASE_ADDR equ 0x1F80 ; Base address for memory-mapped I/O ports

6 GP0 equ 0x1810 ; GP0 register (addr. $1F801810): Rendering

data and VRAM access

7 GP1 equ 0x1814 ; GP1 register (addr. $1F801814): Display

control and environment configuration

8 Main:

9 lui $a0, IO_BASE_ADDR ; Global variable. Load the base address of

I/O ports into $a0

10 // ----------

11 // Send commands to GP1 register (0x1F801814) for display configuration

12 // (Command = 8-Bit MSB, Parameter = 24-Bit LSB)

13 // CCPPPPPP: CC=Command PPPPPP=Parameter

14 // ----------

15 li $t1, 0x00000000 ; 00 = Reset GPU

16 sw $t1, GP1($a0) ; Write to GP1 register

17

18 li $t1, 0x03000000 ; 03 = Enable display

19 sw $t1, GP1($a0) ; Write to GP1 register

20

21 li $t1, 0x08000001 ; 08 = Display mode (320x240, 15-bit, NTSC)

22 sw $t1, GP1($a0) ; Write to GP1 register

23

24 li $t1, 0x06C60260 ; 06 = Horizontal display range -

0bxxxxxxxxxxXXXXXXXXXX (3168..608)

25 sw $t1, GP1($a0) ; Write to GP1 register

26

27 li $t1, 0x07042018 ; 07 = Vertical display range -

0byyyyyyyyyyYYYYYYYYYY (264..24)

28 sw $t1, GP1($a0) ; Write to GP1 register

29 // ----------

30 // Send commands to GP0 register (0x1F801810) to configure drawing area

31 // ----------

32 li $t1, 0xE1000400 ; E1 = Drawing mode settings

33 sw $t1, GP0($a0) ; Write to GP0 register

34

35 li $t1, 0xE3000000 ; E3 = Drawing area top left vertex -

0bYYYYYYYYYYXXXXXXXXXX (10 bits for Y and X)

36 sw $t1, GP0($a0) ; Write to GP0 register

37

38 li $t1, 0xE403BD3F ; E4 = Drawing area bottom right vertex -

0bYYYYYYYYYYXXXXXXXXXX (10 bits for X=319 and Y=239)

70

39 sw $t1, GP0($a0) ; Write to GP0 register

40

41 li $t1, 0xE5000000 ; E5 = Drawing offset -

0bYYYYYYYYYYYXXXXXXXXXXXX (X=0, Y=0)

42 sw $t1, GP0($a0) ; Write to GP0 register

43 // ----------

44 // Clear the screen (draw a filled rectangle in VRAM)

45 // ----------

46 li $t1, 0x02422E1B ; 02 = Create rectangle in VRAM (Color:

0xBBGGRR)

47 sw $t1, GP0($a0) ; Write to GP0 register

48

49 li $t1, 0x00000000 ; Top left corner coordinates (0,0) -

0xYYYYXXXX

50 sw $t1, GP0($a0) ; Write to GP0 register

51

52 li $t1, 0x00EF013F ; Rectangle size (Height=239, Width=319) -

0xHHHHWWWW

53 sw $t1, GP0($a0) ; Write to GP0 register

54 // ----------

55 // Draw a flat-shaded triangle

56 // ----------

57 li $t1, 0x20FF00FF ; 20 = Flat-shaded triangle (Color: 0xBBGGRR)

58 sw $t1, GP0($a0) ; Write to GP0 register

59

60 li $t1, 0x00320032 ; Vertex 1: Coordinates (50, 50) (Parameter

0xYyyyXxxx)

61 sw $t1, GP0($a0) ; Write to GP0 register

62

63 li $t1, 0x001E0064 ; Vertex 2: Coordinates (100, 30) (Parameter

0xYyyyXxxx)

64 sw $t1, GP0($a0) ; Write to GP0 register

65

66 li $t1, 0x0064006E ; Vertex 3: Coordinates (110, 100) (Parameter

0xYyyyXxxx)

67 sw $t1, GP0($a0) ; Write to GP0 register

68 // ----------

69 // Draw a flat-shaded quadrilateral

70 // ----------

71 li $t1, 0x28FF0000 ; 28 = Flat-shaded quadrilateral (Color:

0xBBGGRR)

72 sw $t1, GP0($a0) ; Write to GP0 register

73

74 li $t1, 0x00960096 ; Vertex 1: Coordinates (150, 150) (Parameter

0xYyyyXxxx)

75 sw $t1, GP0($a0) ; Write to GP0 register

71

76

77 li $t1, 0x006400BE ; Vertex 2: Coordinates (190, 100) (Parameter

0xYyyyXxxx)

78 sw $t1, GP0($a0) ; Write to GP0 register

79

80 li $t1, 0x00DC00A0 ; Vertex 3: Coordinates (160, 220) (Parameter

0xYyyyXxxx)

81 sw $t1, GP0($a0) ; Write to GP0 register

82

83 li $t1, 0x00C80104 ; Vertex 4: Coordinates (260, 200) (Parameter

0xYyyyXxxx)

84 sw $t1, GP0($a0) ; Write to GP0 register

85 // ----------

86 // Draw a Gouraud-shaded triangle

87 // ----------

88 li $t1, 0x30FF31FF ; 30 = Gouraud-shaded triangle (Vertex 1

color: 0xBBGGRR)

89 sw $t1, GP0($a0) ; Write to GP0 register

90

91 li $t1, 0x00B40014 ; Vertex 1: Coordinates (20, 180) (Parameter

0xYyyyXxxx)

92 sw $t1, GP0($a0) ; Write to GP0 register

93

94 li $t1, 0x00A88332 ; Vertex 2 color: 0xBBGGRR

95 sw $t1, GP0($a0) ; Write to GP0 register

96

97 li $t1, 0x006400A0 ; Vertex 2: Coordinates (160, 100) (Parameter

0xYyyyXxxx)

98 sw $t1, GP0($a0) ; Write to GP0 register

99

100 li $t1, 0x0000FF00 ; Vertex 3 color: 0xBBGGRR

101 sw $t1, GP0($a0) ; Write to GP0 register

102

103 li $t1, 0x00E6004B ; Vertex 3: Coordinates (75, 230) (Parameter

0xYyyyXxxx)

104 sw $t1, GP0($a0) ; Write to GP0 register

105 LoopForever:

106 j LoopForever ; Infinite loop

107 nop

Codice 4.6: First example of rendering

72

4.8 Memory Management

4.8.1 The MIPS Application Binary Interface

The ABI (Application Binary Interface) acronym defines a set of rules and interfaces that allow

compiled programs to communicate with the underlying operating system or hardware. In other

words, the ABI specifies how data and computational routines are handled at the machine code

level, thus representing a format strongly dependent on the hardware architecture.

A particularly important aspect of an ABI is the ”calling convention”. This defines how programs

should pass arguments during a function call, who is responsible for saving registers, and how

return values should be handled. The standardization of these rules ensures that compiled

programs can reliably function on a specific hardware platform.

The ABI for the MIPS architecture precisely defines register usage and memory management.

Some examples are:

• Passing arguments: Registers $a0-$a3 are used to pass up to four arguments. If more

than four arguments are required, they will be passed via the stack.

• Return values: A function’s return value is stored in the $v0 register. An optional second

return value is stored in $v1.

• Special Registers: Registers like $ra and $k0-$k1 are reserved for storing the return

address of a function call and for the operating system kernel, respectively.

• Stack management: The stack can be used to save temporary data and local variables.

However, argument registers are not automatically saved to the stack by the caller. The

$sp register is reserved for the stack pointer.

• Preserved registers: Registers $s0-$s7 must be preserved across a function call. This

means that if a function modifies them, it is obligated to save their initial content to the

stack and restore it before terminating.

Sources: [99].

73

4.8.2 The Concepts of Heap and Stack

Heap and stack represent two fundamental memory areas available to a program during execu-

tion.

These areas, although both essential for memory management, have different characteristics and

uses.

Stack

The stack is a fixed-size memory area, primarily used to declare local variables, manage static

arrays, pass parameters to functions, and store return addresses during subroutine calls.

This memory portion operates according to the LIFO model, where the last data inserted is the

first to be retrieved. To manage this structure, a special register called the stack pointer ($sp) is

used, which keeps track of the current address of the stack.

Each time a ”push” operation (inserting data) is performed, the stack pointer moves by decre-

menting its value (in architectures that grow downwards). Similarly, a ”pop” operation (retrieving

data) advances the pointer, freeing the memory.

Heap

The heap, unlike the stack, is a memory area that does not have predefined sizes or fixed limits,

but is managed dynamically during the program’s execution. It is an ideal space for allocating

dynamic memory and managing objects or data structures of variable sizes.

Unlike the stack, the programmer (or the execution system) must manually allocate and deallocate

memory, avoiding wastage or errors, such as memory leaks.

Uses

The stack proves particularly useful in contexts where subroutines require the storage of pa-

rameters or temporary values. In MIPS systems, it is possible to take advantage of dedicated

registers, like $s1, $s2, etc., to save the necessary parameters.

However, it is often preferable to save such values on the stack to preserve the state of the

registers and improve code readability.

The stack pointer, acting as a dynamic pointer, allows easy access to the current position in the

stack, simplifying the storage and retrieval operations.

Sources: [100].

74

4.8.3 Second Example of Basic Rendering in MIPS Assembly

This code example puts into practice the con-

cepts of Stack, calling conventions, bit shifting,

logical and arithmetic operations covered in the

previous chapters.

Starting from the code presented in chapter

4.7.6, the section related to drawing the three

graphic primitives (flat triangle, flat quadrilat-

eral, and Gouraud triangle) will be modified to

use a subroutine dedicated exclusively to draw-

ing a flat triangle. The subroutine will receive

as parameters, through the memory stack, the

three vertices and the color.

Figure 4.15: Screen taken from the emulator

during the program execution.

1 [....] variable declaration , display configuration , drawing area and

screen clear

2

3 ; ---------------------

4 ; Set the stack pointer

5 ; ---------------------

6 la $sp, 0x00103CF0 ; Initialize the stack pointer (SP)

7 ; ---------------------

8 ; Draw a flat-shaded triangle using a subroutine

9 ; ---------------------

10 addiu $sp, -(4 * 7) ; Reserve space on the stack for 7 parameters

11 li $t0, 0x0000FF ; Color: 0xBBGGRR

12 sw $t0, 0($sp) ; Save parameter on stack

13 li $t0, 200 ; x1

14 sw $t0, 4($sp) ; Save parameter on stack

15 li $t0, 40 ; y1

16 sw $t0, 8($sp) ; Save parameter on stack

17 li $t0, 288 ; x2

18 sw $t0, 12($sp) ; Save parameter on stack

19 li $t0, 56 ; y2

20 sw $t0, 16($sp) ; Save parameter on stack

21 li $t0, 224 ; x3

22 sw $t0, 20($sp) ; Save parameter on stack

23 li $t0, 200 ; y3

24 sw $t0, 24($sp) ; Save parameter on stack

25 jal DrawFlatTriangle ; Jump to subroutine to draw the triangle

26 nop

27

75

28 LoopForever:

29 j LoopForever ; Infinite loop to block execution

30 nop

31

32 ; ---------------------

33 ; Subroutine to draw a flat-shaded triangle

34 ; Arguments:

35 ; $sp+0 = Color

36 ; $sp+4 = x1 ; $sp+8 = y1

37 ; $sp+12 = x2 ; $sp+16 = y2

38 ; $sp+20 = x3 ; $sp+24 = y3

39 ; ---------------------

40 DrawFlatTriangle:

41 lui $t0, 0x2000 ; Command: Flat-shaded triangle

42 lw $t1, 0($sp) ; Color

43 or $t8, $t0, $t1 ; Command | Color

44 sw $t8, GP0($a0) ; Write command to GP0

45

46 lw $t1, 4($sp) ; x1

47 lw $t2, 8($sp) ; y1

48 sll $t2, $t2, 16 ; y1 <<= 16

49 or $t8, $t1, $t2 ; x1 | y1

50 sw $t8, GP0($a0) ; Write vertex 1

51

52 lw $t1, 12($sp) ; x2

53 lw $t2, 16($sp) ; y2

54 sll $t2, $t2, 16 ; y2 <<= 16

55 or $t8, $t1, $t2 ; x2 | y2

56 sw $t8, GP0($a0) ; Write vertex 2

57

58 lw $t1, 20($sp) ; x3

59 lw $t2, 24($sp) ; y3

60 sll $t2, $t2, 16 ; y3 <<= 16

61 or $t8, $t1, $t2 ; x3 | y3

62 sw $t8, GP0($a0) ; Write vertex 3

63

64 addiu $sp, $sp, (4 * 7) ; Restore the stack pointer

65 jr $ra ; Return to caller

66 nop

67

68 .close

Codice 4.7: Second example of rendering

76

4.8.4 The Concept of Variable and Vector Alignment

In this context of programming, we can distinguish between local and global variables. Local

variables, also known as ”automatic variables”, are temporarily allocated in registers like $t0,

$t1, etc. On the other hand, global variables, or external variables, require space in the main

memory and must be explicitly declared.

A crucial aspect of declaring variables in memory is alignment. The fundamental rule establishes

that the starting address of a variable must be a multiple of its size. For example, word-type

variables (32 bit) must be aligned to addresses that are multiples of 4, while halfword-type

variables (16 bit) require alignment to multiples of 2. Byte-type variables (8 bit), on the other

hand, do not require specific alignment, as they occupy only one byte. Directives like .hword

and .word in MIPS Assembly automatically ensure correct alignment in memory, making the

management process simpler for the programmer.

When working with vectors, each element follows the same alignment rule, while the entire

vector must start from a correctly aligned address. On PSX, alignment becomes even more

relevant, as operations like DMA transfer and the use of the frame buffer often require data

aligned to 64-byte blocks to optimize speed and ensure correct processing. Sources: [101].

1 .org 0x80010000 // Starting point in memory

2 // Declaration of a byte with value 0x1F (31 decimal)

3 var_byte: .byte 0x1F

4 // Declaration of a halfword (2 bytes) with value 0x1234

5 var_hword: .hword 0x1234

6 // Declaration of a word (4 bytes) with value 0x12345678

7 var_word: .word 0x12345678

8 // Declaration of a .word vector with 3 values (4,5,6)

9 vector_word_3: .word 4, 5, 6

10 // Declaration of a .word vector with 256 undefined values

11 .align 2 // Alignment to 4 bytes (2ˆ2 = 4)

12 vector_word_256: .space 256 * 4 // Reserve space for 256 words (256 * 4

bytes)

13 // Declaration of a .hword vector with 256 undefined values

14 .align 1 // Alignment to 2 bytes (2ˆ1 = 2)

15 vector_hword_256: .space 256 * 2 // Reserve space for 256 halfwords (256 *

2 bytes)

16 // Declaration of a .byte vector with 256 undefined values (no alignment

needed)

17 vector_byte_256: .space 256 // Reserve space for 256 bytes

18 .close

Codice 4.8: Examples of variable and vector alignment

77

4.8.5 Third Example of Basic Rendering in MIPS Assembly

This code example illustrates how to load a 24-

bit per pixel (bpp) texture into the PSX frame

buffer. After configuring the display and draw-

ing area, the image data is transferred from the

main memory to the VRAM using DMA for

faster transfer.

The code applies data alignment in memory to

optimize access and ensure faster transfers. In

addition, it uses bit shifting operations to dy-

namically calculate the size of data to be trans-

ferred, improving the overall efficiency of the

program.

Figure 4.16: Screenshot taken from the emu-

lator during program execution. In this case,

[102] was used, which correctly handles the

24bpp mode, unlike the previous emulator.

1 .psx

2 .create "03_Rendering_DMA.bin", 0x80010000

3 .org 0x80010000

4

5 // Definition of constants and IO_BASE_ADDR , GP0, GP1 registers as in

previous examples

6

7 // Constants for DMA transfer

8 DMA_BASE_ADDR equ 0x1F801080 // Base address of the DMA controller

9 DMA_GPU_CHCR equ 0x70 // Offset of the GPU channel control

register

10 DMA_GPU_MADR equ 0x74 // Offset of the memory address register

11 DMA_GPU_BCR equ 0x78 // Offset of the block control register

12 DMA_CONTROL equ 0x7C // General DMA control register

13

14 // Image constants

15 IMG_WIDTH equ 640

16 IMG_HEIGHT equ 480

17 IMG_SIZE_BYTES equ 921600 // 640 x 480 x 3 bytes per pixel (24bpp)

18

19 Main:

20 lui $a0, IO_BASE_ADDR

21

78

22 // Send GPU RESET and Display Enable commands as in previous examples

23

24 li $t1, 0x08000037 // Command 08: Display mode

(640x480, 24bpp, NTSC)

25 sw $t1, GP1($a0) // Write to GP1 register

26

27 li $t1, 0x06C60260 // Command 06: Horizontal display

range (3168..608)

28 sw $t1, GP1($a0) // Write to GP1 register

29

30 li $t1, 0x0707E018 // Command 07: Vertical display

range (504..24)

31 sw $t1, GP1($a0) // Write to GP1 register

32

33 // Send commands to GP0 register to configure drawing area as in

previous examples

34

35 // DMA transfer configuration

36 // 1. Set up the DMA controller for transfer to GPU (Channel 2)

37 // 2. Configure DMA transfer to send the image to VRAM

38

39 // Base address of the DMA controller

40 lui $t5, (DMA_BASE_ADDR >> 16) // Load upper part of DMA base

address into $t5

41

42 // Set the MADR (Memory Address Register) with the image address

43 la $t1, Image // Load image address

44 ori $t0, $t5, DMA_GPU_MADR // Address of MADR register for GPU

channel

45 sw $t1, 0($t0) // Write image address to MADR

register

46 nop // Delay slot

47

48 // Calculate number of words to transfer (IMG_SIZE_BYTES / 4)

49 li $t1, IMG_SIZE_BYTES // Load total image size in bytes

50 srl $t1, $t1, 2 // Divide by 4 (shift right logical

by 2 bits)

51 nop // Delay slot

52

53 // Set the BCR (Block Control Register) with the transfer length

54 ori $t0, $t5, DMA_GPU_BCR // Address of BCR register for GPU

channel

55 sw $t1, 0($t0) // Write length to BCR register

56 nop // Delay slot

57

58 // Set the CHCR (Channel Control Register) to start the transfer

79

59 li $t1, 0x01000200 // Set channel control (Normal mode,

CPU->GPU)

60 ori $t0, $t5, DMA_GPU_CHCR // Address of CHCR register for GPU

channel

61 sw $t1, 0($t0) // Write to CHCR register

62 nop // Delay slot

63

64 // Set the start bit in CHCR register to begin the transfer

65 lw $t1, 0($t0) // Read current CHCR value

66 lui $t2, 0x0100 // Load 0x01000000 into $t2 (bit 24)

67 or $t1, $t1, $t2 // Set start bit (bit 24)

68 sw $t1, 0($t0) // Write to CHCR register to start

transfer

69 nop // Delay slot

70

71 // Wait for DMA transfer to complete

72 WaitDMADone:

73 lw $t1, 0($t0) // Read current CHCR value

74 lui $t2, 0x0100 // Load 0x01000000 into $t2

75 and $t1, $t1, $t2 // Check start bit

76 bne $t1, $zero, WaitDMADone // If DMA is still in progress, keep

waiting

77 nop // Delay slot

78

79 LoopForever:

80 j LoopForever // Infinite loop

81 nop // Delay slot

82

83 // Data Section (Image)

84 .align 2 // Align to multiple of 4 bytes (2ˆ2)

85 Image:

86 .incbin "campo-di-fiori_640x480_24bit.bin" // Include 24bpp binary

image (921600 bytes)

87

88 .close

Codice 4.9: Example of uploading a 24bpp image via DMA

80

1 .psx

2 .create "03_Rendering_DMA.bin", 0x80010000

3 .org 0x80010000

4

5 // Definition of constants and IO_BASE_ADDR , GP0, GP1 registers as in

previous examples

6

7 // Constants for DMA transfer

8 DMA_BASE_ADDR equ 0x1F801080 // Base address of the DMA controller

9 DMA_GPU_CHCR equ 0x70 // Offset of the GPU channel control

register

10 DMA_GPU_MADR equ 0x74 // Offset of the memory address register

11 DMA_GPU_BCR equ 0x78 // Offset of the block control register

12 DMA_CONTROL equ 0x7C // General DMA control register

13

14 // Image constants

15 IMG_WIDTH equ 640

16 IMG_HEIGHT equ 480

17 IMG_SIZE_BYTES equ 921600 // 640 x 480 x 3 bytes per pixel (24bpp)

18

19 Main:

20 lui $a0, IO_BASE_ADDR

21

22 // Send GPU RESET and Display Enable commands as in previous examples

23

24 li $t1, 0x08000037 // Command 08: Display mode

(640x480, 24bpp, NTSC)

25 sw $t1, GP1($a0) // Write to GP1 register

26

27 li $t1, 0x06C60260 // Command 06: Horizontal display

range (3168..608)

28 sw $t1, GP1($a0) // Write to GP1 register

29

30 li $t1, 0x0707E018 // Command 07: Vertical display

range (504..24)

31 sw $t1, GP1($a0) // Write to GP1 register

32

33 // Send commands to GP0 register to configure drawing area as in

previous examples

34

35 // DMA transfer configuration

36 // 1. Set up the DMA controller for transfer to GPU (Channel 2)

37 // 2. Configure DMA transfer to send the image to VRAM

38

39 // Base address of the DMA controller

81

40 lui $t5, (DMA_BASE_ADDR >> 16) // Load upper part of DMA base

address into $t5

41

42 // Set the MADR (Memory Address Register) with the image address

43 la $t1, Image // Load image address

44 ori $t0, $t5, DMA_GPU_MADR // Address of MADR register for GPU

channel

45 sw $t1, 0($t0) // Write image address to MADR

register

46 nop // Delay slot

47

48 // Calculate number of words to transfer (IMG_SIZE_BYTES / 4)

49 li $t1, IMG_SIZE_BYTES // Load total image size in bytes

50 srl $t1, $t1, 2 // Divide by 4 (shift right logical

by 2 bits)

51 nop // Delay slot

52

53 // Set the BCR (Block Control Register) with the transfer length

54 ori $t0, $t5, DMA_GPU_BCR // Address of BCR register for GPU

channel

55 sw $t1, 0($t0) // Write length to BCR register

56 nop // Delay slot

57

58 // Set the CHCR (Channel Control Register) to start the transfer

59 li $t1, 0x01000200 // Set channel control (Normal mode,

CPU->GPU)

60 ori $t0, $t5, DMA_GPU_CHCR // Address of CHCR register for GPU

channel

61 sw $t1, 0($t0) // Write to CHCR register

62 nop // Delay slot

63

64 // Set the start bit in CHCR register to begin the transfer

65 lw $t1, 0($t0) // Read current CHCR value

66 lui $t2, 0x0100 // Load 0x01000000 into $t2 (bit 24)

67 or $t1, $t1, $t2 // Set start bit (bit 24)

68 sw $t1, 0($t0) // Write to CHCR register to start

transfer

69 nop // Delay slot

70

71 // Wait for DMA transfer to complete

72 WaitDMADone:

73 lw $t1, 0($t0) // Read current CHCR value

74 lui $t2, 0x0100 // Load 0x01000000 into $t2

75 and $t1, $t1, $t2 // Check start bit

76 bne $t1, $zero, WaitDMADone // If DMA is still in progress, keep

waiting

82

77 nop // Delay slot

78

79 LoopForever:

80 j LoopForever // Infinite loop

81 nop // Delay slot

82

83 // Data Section (Image)

84 .align 2 // Align to multiple of 4 bytes (2ˆ2)

85 Image:

86 .incbin "campo-di-fiori_640x480_24bit.bin" // Include 24bpp binary

image (921600 bytes)

87

88 .close

Codice 4.10: Example of uploading a 24bpp image via DMA

83

Chapter 5

Programming in C

This chapter delves into development for PlayStation using the C language, a high-level pro-

gramming solution supported by the console that can significantly simplify the workflow. The

goal is to investigate how the C language interacts with hardware and official libraries, as well

as to explore strategies and resources useful for fully leveraging the system’s potential.

Unlike previous generations of consoles such as the Sega Genesis, NES, or SNES, where

programming relied primarily on assembly, the advent of PlayStation marked an important shift

towards higher-level languages. The previous chapter, dedicated to MIPS Assembly, provides

the theoretical and practical foundations for understanding how C instructions are ultimately

translated into machine language.

To recreate a development environment that reflects the operating conditions of the era, a C

compiler, a debugger, and Sony’s official PSY-Q library will be used. The latter, originally

designed for 32-bit systems, has been integrated into an operational context rebuilt through a

virtual machine running Windows XP.

Within this environment, the 32-bit version of the PSY-Q library is available, along with a

GNU (DJGPP) C compiler and 32-bit Windows development tools from the historical period

in question. The necessary resources were obtained from enthusiast websites specializing

in PlayStation development, such as: [103][104][105]. For console emulation, the No$psx

emulator was chosen, available at [106], while Code::Blocks[107] was adopted as the IDE.

Detailed installation and configuration instructions for the various components will not be

provided here, as these procedures are already extensively documented in the cited sources.

84

5.1 History of the PSY-Q SDK

The history of the Psy-Q SDK began with the collaboration between the companies SN Systems

and Cross Products. Founded in 1988, SN Systems developed a fast and efficient assembler for

Atari and Amiga called SNASM, which was later modified by Cross Products into SNASM68K.

The latter became the standard tool for Sega Mega Drive development. In 1993, SN Systems

and Psygnosis launched the Psy-Q kit. This SDK was designed to support multiple platforms,

including PlayStation, Super Nintendo, Sega Genesis, and Sega Saturn.

This SDK introduced significant improvements over previous versions, such as support for

source-level C debugging and advanced features for large-scale projects. Psy-Q became the

primary development tool for PlayStation 1 games, and many successful titles of the era were

created using this kit.

The Psy-Q kit included optimized assemblers for the R3000 processor, a high-speed linker,

and a debugger for Windows 95 and DOS. Integration with the GNU C compiler enabled

developers to convert C source code into optimized MIPS Assembly for PlayStation. In the

following years, Psy-Q was rebranded as SDevTC (Sony Developer Toolchain) and continued

to be used until the end of the PlayStation’s lifecycle. Today, although Psy-Q remains a

historically significant resource, open-source alternatives such as PSn00bSDK, CandyK-PSX,

and PSXSDK are available. Nevertheless, Psy-Q’s role remains central to understanding the

historical development on the PSX. Sources: [108].

Figure 5.1: Magazine advertisement for the PSY-Q SDK

85

5.2 Key Programming Concepts

5.2.1 Double Buffering

Double buffering, as described in Chapter 4.7.1, is a technique frequently used on the PS1 to

ensure smooth graphical processing free from visual artifacts. Its implementation relies on the

combined use of two main components: the frame buffer (see Chapter 4.7.1) and the ordering

tables. This setup allows the separation of the area dedicated to image creation from the one used

for display, reducing issues such as ”tearing” (a graphical artifact occurring when the on-screen

frame contains information from two or more frames) or flickering.

It is common practice to structure the frame buffer to contain two images: one for the processing

phase (drawing area) and one for display. The latter is positioned exactly beneath the first image

(see Figure 4.7, Chapter 4.7.1). This approach enables the system to continue processing the

next frame while the current one is being displayed.

Synchronization between these two areas occurs during a time interval called vertical blanking

(VBlank). During this period, the system halts video signal updates to allow the drawing and

display areas to be swapped for a smoother transition. This scheme thus maintains a continuous

rendering pipeline and optimizes hardware resource usage. At the same time, it guarantees a

stable and disturbance-free visual experience.

5.2.2 Z-Sorting

Z-sorting is a technique used to order the objects in a scene based on their depth relative to the

camera’s viewpoint. This process is essential to correctly represent a 3D scene on a 2D screen,

ensuring that, as in reality, closer objects occlude those farther away. In the PSX environment,

this technique is based on an algorithm that sorts polygons according to their depth. Also known

as the Painter’s Algorithm [109], it involves sequentially drawing objects starting from those

farthest from the camera, ensuring that nearer objects overwrite those behind them. Compared

to other techniques such as Z-buffering, Z-sorting is better suited to the console’s hardware

architecture, as it requires less memory and enables faster processing. An important aspect is

the relationship between scene complexity and resource requirements. As the number of objects

to sort increases, computation time grows significantly. However, thanks to the use of ordering

tables, the PSX implements this technique efficiently.

5.2.3 Ordering Tables

Ordering tables (OT) are typical data structures used to organize and manage graphic com-

mands in the PlayStation environment. These tables function as linked lists that sort graphical

86

Figure 5.2: Example of the Painter’s Algorithm [45]

elements such as polygons, sprites, and line segments based on their visual depth (Z-depth), thus

facilitating the Z-sorting process.

Each element in an OT consists of a pointer linking one element to the next and a field spec-

ifying its size. Initially, the array is initialized with a default value indicating the end of the

list (usually 0xFFFFFF). This approach simplifies adding, removing, and modifying elements

without reallocating memory.

Figure 5.3: Example of an Ordering Table

87

Depending on the needs, it is also possible to create a reverse ordered table using functions like

ClearOTagR(). This, known as a ”Reverse Ordering Table,” is useful for rendering polygons in

reverse depth order, thus enabling the implementation of the Painter’s Algorithm mentioned in

the previous chapter.

The addition of graphic primitives to an OT is done through functions such as addPrim().

Once the OT is complete, its content is sent to the GPU for rendering via the DrawOTag()

function, which draws the elements in the established order. The integration of OTs with

libraries like LIBGPU, LIBGTE, and LIBGS provides programmers with precise control over

rendering modes. The concept of Ordering Tables is extremely flexible regarding graphic

resource management. A single position can contain one or multiple primitives. Additionally,

using multiple local OTs allows the subdivision of complex scenes into simpler units, which

can later be merged into a single global table. Despite these advantages, using this mechanism

Figure 5.4: Example of using multiple Ordering Tables

can lead to substantial memory usage depending on the level of detail in a scene. To mitigate

this issue, two solutions are possible: The first consists of reducing the table size by decreasing

the number of represented depth levels (a solution that may cause visual artifacts such as

polygon flickering). The second, more efficient solution involves using an offset parameter

in the GsClearOt() function, which allows ignoring depth levels below a predefined threshold

(enabling lower memory usage without resolution compromises). In conclusion, Ordering

Tables allow efficient management of 3D rendering, balancing hardware limitations with the

need to represent complex visual scenarios. Sources: [110][111].

88

5.3 Main System Libraries

The PlayStation operating system libraries are divided into high-level and low-level libraries.

This library structure allows choosing the most appropriate level according to one’s needs, with

the possibility of using both levels simultaneously. The table below describes the main libraries.

Sources: [112].

Name Description

libapi Kernel library providing an interface (API) between the PSX OS and applica-

tions.

libc / libc2 Standard C libraries with functions for character handling, memory operations,

character class tests, and utilities.

libmath Mathematical library compliant with ANSI/IEEE754 standards, supporting

floating-point calculations.

libcard Library for Memory Card control, including filesystem and drivers.

libmcrd High-level interface for Memory Card management.

libpress Library for compression and decompression of image and audio data.

libgpu Basic graphics library for handling primitives such as sprites, polygons, and

lines.

libgte Library for controlling the GTE, with matrix and vertex management.

libgs Extended 3D graphics system utilizing libgpu and libgte to manage complex

objects and background surfaces.

libcd Library for reading data from the CD-ROM and playback of digital audio (DA)

and XA sound.

libds Extended CD-ROM library with advanced control functions and error recovery.

libetc Library for callback control and low-level peripheral and interrupt handling.

libtap Library for accessing multiple controllers and Memory Cards via the Multi-Tap.

libgun Library for input devices such as the Light Pen connected to controller ports.

libpad Library for accessing controllers, including those using extended protocols such

as the DualShock.

libcomb Library for communication via the Link Cable, supporting communication

blocks of 8 bits.

libsnd Extended audio library for playback of pre-recorded sound sequences.

libspu Basic library for controlling the SPU (Sound Processing Unit).

libsio Library for managing serial I/O via SIO 1.

libhmd Library for handling the HMD format integrating modeling, animation, textures,

and MIMe data.

libmcx Library for accessing PDA functions when inserted into a Memory Card slot.

mcgui Module supporting loading and saving data on Memory Cards and providing

user interface functionalities.

89

5.4 Geometry Transformation Engine

As explained in Chapter 3, the GTE is a high-speed geometric processor designed to handle

vectors and matrices. Thanks to its integrated multiplier, accumulator, and divider units, the

GTE supports complex real-time calculations using fixed-point fractional numbers. Its main

features include:

• High-speed matrix calculations.

• Fast coordinate transformations.

• Efficient perspective projections.

• Optimized lighting calculations.

Sources: [113][114][115][116].

5.4.1 3D Transformations

Regarding 3D rendering, the GTE follows a well-defined pipeline to transform a three-dimensional

world representation into a two-dimensional image on the screen. This process includes the fol-

lowing stages:

• 3D objects are generated with coordinates defined relative to a local coordinate system,

where all vertices refer to an origin point (also called the ”pivot point”).

• To position the object in a 3D world, vertices are transformed into the World Coordinate

System by multiplying the object’s vertices by a world matrix that includes rotation, scale,

and translation information.

• The scene is then transformed into a view volume using a view matrix. At this stage,

the coordinate system origin becomes the camera position, which looks toward a defined

target.

• The final step projects the vertices onto the 2D screen via a ”perspective divide,” an

operation that divides the original XY values by the Z component (depth). This process

proportionally reduces the size of distant objects, simulating perspective.

Once these transformations are completed, the resulting 2D data is sent to the GPU for rasteri-

zation, finalizing the rendering process.

90

5.4.2 Examples of GTE Instructions

Vertex Transformation (RTPT)

1 SVECTOR vertex = {100, 200, 300}; // Vertex coordinate in local space

2 VECTOR translation = {0, 0, 1024}; // Translation in world space

3 MATRIX transformMatrix; // Transformation matrix

4

5 // Transformation matrix setup

6 RotMatrix(&rotation , &transformMatrix); // Apply a rotation

7 TransMatrix(&transformMatrix , &translation); // Apply a translation

8

9 // Set active matrices

10 SetRotMatrix(&transformMatrix);

11 SetTransMatrix(&transformMatrix);

12

13 // Load the vertex

14 gte_ldv0(&vertex); // Load the first vertex

15

16 // Perform the transformation

17 gte_rtpt(); // Transform and project

18

19 // Extract the projected 2D coordinates

20 long screenX, screenY, screenZ;

21 gte_stsxy(&screenX); // 2D coordinates on screen

22 gte_stsz(&screenZ); // Depth (Z-buffer)

Codice 5.1: This command transforms a set of 3D vertices from world space to screen space

coordinates.

Lighting: Normal Calculation (NCLIP)

1 SVECTOR normal = {0, 0, -4096}; // Face normal

2 VECTOR light = {0, 0, 4096}; // Light direction

3

4 // Load the normal

5 gte_ldv0(&normal);

6 // Compute the dot product

7 gte_nclip();

8

9 // Extract the result

10 long visibility;

11 gte_stopz(&visibility); // If > 0, the face is visible

Codice 5.2: This command determines if a face is visible relative to the camera direction.

91

Perspective Projection Calculation

1 // 3D point in local space

2 SVECTOR vertex = {256, 128, 512};

3

4 // Translation in world space

5 VECTOR translation = {0, 0, 1024};

6

7 // Matrix setup and transformation

8 MATRIX transformMatrix;

9 RotMatrix(&rotation , &transformMatrix);

10 TransMatrix(&transformMatrix , &translation);

11 SetRotMatrix(&transformMatrix);

12 SetTransMatrix(&transformMatrix);

13

14 // Load the point and project

15 gte_ldv0(&vertex);

16 gte_rtps();

17

18 // Extract coordinates and depth

19 long screenX, screenY, depthZ;

20 gte_stsxy(&screenX);

21 gte_stsz(&depthZ);

22

23 // Print results

24 printf("X=%ld, Y=%ld, Z=%ld\n", screenX, screenY, depthZ);

Codice 5.3: Projection of a 3D point into 2D screen coordinates.

Shading Interpolation: Gouraud Color Calculation

1 SVECTOR normal = {0, -4096, 0}; // Vertex normal

2 CVECTOR lightColor = {128, 128, 128}; // Light color

3

4 // Set light parameters

5 SetLightMatrix(&lightMatrix);

6 SetColorMatrix(&colorMatrix);

7

8 gte_ldv0(&normal); // Load the normal

9

10 gte_ncs(); // Compute lighting

11

12 // Extract the resulting color

13 CVECTOR resultColor;

14 gte_stcl0(&resultColor);

Codice 5.4: This command uses normals and light vectors to compute vertex color.

92

Bounding Box Calculation (AVSZ4)

1 SVECTOR v0 = {0, 0, 512};

2 SVECTOR v1 = {256, 0, 512};

3 SVECTOR v2 = {256, 256, 512};

4 SVECTOR v3 = {0, 256, 512};

5

6 // Load the vertices

7 gte_ldv0(&v0);

8 gte_ldv1(&v1);

9 gte_ldv2(&v2);

10 gte_ldv3(&v3);

11

12 // Calculate the average distance

13 gte_avsz4();

14

15 // Extract the distance

16 long averageZ;

17 gte_stotz(&averageZ);

Codice 5.5: This command calculates the average distance of four vertices from a viewpoint.

Lighting Matrix Setup

1 MATRIX lightMatrix = {

2 {0x1000, 0x0000, 0x0000}, // Light direction R

3 {0x0000, 0x1000, 0x0000}, // Light direction G

4 {0x0000, 0x0000, 0x1000} // Light direction B

5 };

6

7 MATRIX colorMatrix = {

8 {0x0080, 0x0000, 0x0000}, // Light intensity R

9 {0x0000, 0x0080, 0x0000}, // Light intensity G

10 {0x0000, 0x0000, 0x0080} // Light intensity B

11 };

12

13 SetLightMatrix(&lightMatrix);

14 SetColorMatrix(&colorMatrix);

Codice 5.6: Configuration to achieve lighting effects.

93

5.4.3 GTE Register Set

To perform the geometric transformation operations described above, the GTE provides two sets

of registers: 32 control registers and 32 general (data) registers.

General Registers

These registers store data operated on by the GTE, such as vertex coordinates, transformation

matrices, and lighting parameters. Developers can read from and write to these registers to

define processing values.

Table 5.1: GTE (Coprocessor 2) registers and their descriptions.

Register Type and Name Description

cop2r0-1 3xS16 VXY0, VZ0 Vector 0 (X, Y, Z).

cop2r2-3 3xS16 VXY1, VZ1 Vector 1 (X, Y, Z).

cop2r4-5 3xS16 VXY2, VZ2 Vector 2 (X, Y, Z).

cop2r6 4xU8 RGBC Color value/code.

cop2r7 1xU16 OTZ Average Z value (for Ordering Table).

cop2r8 1xS16 IR0 16-bit accumulator (interpolation).

cop2r9-11 3xS16 IR1, IR2, IR3 16-bit accumulators (vector).

cop2r12-15 6xS16 SXY0, SXY1, SXY2, SXYP Screen XY coordinate FIFO (3 stages).

cop2r16-19 4xU16 SZ0, SZ1, SZ2, SZ3 Screen Z coordinate FIFO (4 stages).

cop2r20-22 12xU8 RGB0, RGB1, RGB2 CRGB color FIFO/code (3 stages).

cop2r23 4xU8 (RES1) Reserved.

cop2r24 1xS32 MAC0 32-bit mathematical accumulator

(value).

cop2r25-27 3xS32 MAC1, MAC2, MAC3 32-bit mathematical accumulators

(vector).

cop2r28-29 1xU15 IRGB, ORGB RGB color conversion (48-bit vs

15-bit).

cop2r30-31 2xS32 LZCS, LZCR Leading-zero/one count (sign bit).

Control Registers

These registers contain configuration information that controls GTE behavior, such as projection

parameters, scaling, offsets, and lighting calculation settings.

94

Table 5.2: GTE (Coprocessor 2) control registers and their descriptions.

Register Type and Name Description

cop2r32-36 9xS16 RT11, RT12, ..., RT33 Rotation matrix (3x3).

cop2r37-39 3x32 TRX, TRY, TRZ Translation vector (X, Y, Z).

cop2r40-44 9xS16 L11, L12, ..., L33 Light source matrix (3x3).

cop2r45-47 3x32 RBK, GBK, BBK Background color (R, G, B).

cop2r48-52 9xS16 LR1, LR2, ..., LB3 Light source color matrix (3x3).

cop2r53-55 3x32 RFC, GFC, BFC Far color (R, G, B).

cop2r56-57 2x32 OFX, OFY Screen offset (X, Y).

cop2r58 BuggyU16 H Projection plane distance.

cop2r59 S16 DQA Depth queuing parameter A (coefficient).

cop2r60 32 DQB Depth queuing parameter B (offset).

cop2r61-62 2xS16 ZSF3, ZSF4 Scale factors for average Z.

cop2r63 U20 FLAG Returns calculation errors.

Dedicated Instruction Set

The Geometry Transformation Engine (GTE), integrated into the CPU, does not use memory

mapping like the GPU. Instead, it has a dedicated instruction set specific to Coprocessor 2.

Below is an example related to the ”RotTransPers3” instruction:

Figure 5.5: GTE instructions used by the RotTransPers3 function.

Instructions such as lwc2 and swc2 correspond to ”Load Word Coprocessor 2” and ”Store Word

95

Coprocessor 2,” respectively. In the example, the first part of the code provides the necessary

data to the GTE registers, while the second part shows the processed output.

5.5 Clipping

It is not always necessary to render all polygons of an object on the screen. In some cases,

rendering every surface can cause visual artifacts such as the z-fighting phenomenon.

This issue occurs when two surfaces are located at a similar distance from the camera, and

their depth values overlap. This results in continuous polygon ”flickering” due to the system’s

inability to determine which surface should be drawn first. To prevent these problems, clipping

techniques can be employed.

Clipping elements outside the camera’s view is a very useful step to optimize the use of PSX

resources. By eliminating objects that fall outside the visible field, the number of calculations

and geometry processing is consequently reduced. Sources: [98].

Figure 5.6: Illustration of the ”clipping” concept

[46]

5.5.1 Backface Culling

Among the most commonly used clipping techniques is Normal Clip, also known as backface

culling or the ”hidden surface removal algorithm”. This algorithm allows ignoring the faces

96

of an object that are not facing the screen, thereby optimizing rendering and avoiding drawing

polygons that would not be visible.

Figure 5.7: Graphical representation of Backface Culling

[47]

This process is based on the orientation of polygon faces relative to the camera position. Each

polygon is defined by a normal vector, which is perpendicular to its surface. This normal vector

is calculated based on the triangle’s vertices and represents the direction the face is oriented

toward. The technique can be explained through the following steps:

1. Compute the polygon’s normal vector (n) and consider a camera direction vector (e)

pointing from the virtual eye (camera) toward the polygon’s centroid.

2. To determine if a face is visible, calculate the dot product between the normal (n) and the

camera vector (e). This can be done in two ways:

97

• Using the non-normalized dot product:

e · n = 4G=G + 4H=H + 4I=I

• Or by calculating the cosine of the angle \ between the two vectors, which includes

normalization:

cos(\) =
e · n

∥e∥ · ∥n∥

3. If the dot product e · n > 0 (or cos \ > 0 if normalized), the polygon is visible. Otherwise,

if e · n ≤ 0 (or cos \ ≤ 0), the polygon is not visible.

4. Based on the above calculation, polygons that do not meet the visibility condition are

ignored during rendering.

Fortunately, the PlayStation provides a dedicated function called gte nclip(). An example

can be seen in code 5.2 of the previous chapter.

5.5.2 Cohen-Sutherland Algorithm

The Cohen-Sutherland algorithm is a clipping technique for 2D line segments. It divides the

projection space into nine regions by extending the clipping window borders. Each point in

space is identified by a binary code known as an outcode, which represents its position relative

to the viewport.

After computing the outcodes for the two endpoints of the segment, four main cases occur:

• Case 1: Both outcodes are zero. The segment lies entirely within the window, and no

clipping is necessary.

• Case 2: The AND operation between outcodes yields a non-zero result. In this case,

the segment lies entirely outside the window and must be discarded.

• Case 3: Only one outcode is zero. This means one endpoint is inside the window while

the other is outside. Partial clipping is required by calculating intersection points with the

window edges.

• Case 4: The AND operation between outcodes yields zero. Both endpoints are outside

the window, but in different regions. Further checks are necessary to determine whether

the segment intersects the window.

Despite its popularity, the Cohen-Sutherland algorithm has a limitation in the fourth case. When

the logical AND operation between outcodes >1 and >2 returns zero, the segment may cross

part of the window without properly accounting for the borders. This can lead to errors in

98

Figure 5.8: Graphical representation of the nine-region subdivision in the Cohen-Sutherland

algorithm

[48]

determining which portions of the segment are visible.

5.5.3 Liang-Barsky Algorithm

The Liang-Barsky algorithm addresses the previous algorithm’s limitations by providing an

alternative approach. It exploits a parametric representation of lines. Given a segment defined

by points %1 and %2, the algorithm uses a parameter U to represent any point on the line as:

?(U) = (1 − U)%1 + U%2

where U varies between 0 and 1 to describe the segment between %1 and %2.

This algorithm calculates the U values corresponding to the intersections of the line with the

clipping window edges. Using these values, it determines which portions of the line are visible.

This reduces the number of necessary operations and thus the intersection calculations.

5.5.4 Bounding Boxes

Finally, the use of bounding boxes will be analyzed. This technique is based on a concept

as simple as it is effective. Instead of clipping each individual side or vertex of a polygon, a

”rectangle” or volume that encloses the entire object—called the bounding box—is used. This

box is then compared against the clipping window to quickly determine the object’s visibility.

This concept excels in scenarios involving complex objects, as it significantly reduces the number

of operations required to determine visibility. The cases are as follows:

• If the bounding box is completely outside the window, the entire object is discarded.

99

Figure 5.9: Representation of the Liang-Barsky algorithm, where the parameterized segment C

intersects the clipping window edges, determining the visible portion inside the rectangle.

[49]

• If it is completely inside, the object is accepted without further calculations.

• If it intersects the window, more detailed calculations are performed for the actual edges,

using the aforementioned algorithms.

Figure 5.10: Clipping using Bounding Boxes

100

5.6 Fixed Point Math

Up to this point, the focus has been on using integer values, such as coordinates - and. and color

values '��. However, when dealing with video games, concepts like movement, acceleration,

or rotation require fractional numbers to achieve greater precision.

Fractional numbers allow representing values with finer granularity, making it possible, for

example, to express angles in radians. In modern computers, floating-point numbers are natively

supported by hardware and can be declared in C language using variables such as float (32-bit

precision) and double (64-bit).

On the PSX platform, the 32-bit limit is not always sufficient to represent real numbers (both

positive and negative) and therefore to guarantee a precise representation over a wide range of

values. The IEEE754 standard format is designed to represent a broad spectrum of real numbers

using:

• Sign ((): 1 bit.

• Exponent (�): 8 bits.

• Mantissa ("): the remaining bits.

Figure 5.11: Two examples of floating-point number conversion in the IEEE754 standard format

[50]

This implementation allows efficient representation of real numbers but introduces a non-

constant resolution, also known as Unit of Least Precision (ULP), which varies depending

on the value. For example:

• 0.004 has a resolution of 0.001

• 24.11 has a resolution of 0.01

• 912.3 has a resolution of 0.1

• 1000 has an integer resolution

The variability of the ULP can lead to inaccuracies in calculations. For instance, an operation

101

like 0.1 + 0.2 can return 0.30000000000000004.

This issue makes floating-point numbers unsuitable when absolute precision is required, such

as in financial calculations or coordinate management in video games.

Fixed Point Math represents a more suitable alternative for systems lacking an FPU, like the

PlayStation. This method relies on reserving a fixed number of bits for the integer part of the

number and another fixed number for the fractional part. This eliminates the variability of the

ULP.

Below are two possible uses of Fixed Point Math with 32 available bits:

• 16.16 Fixed-Point: 16 bits are dedicated to the integer part and 16 to the fractional part.

• 20.12 Fixed-Point: 20 bits for the integer part and 12 for the fractional part.

Figure 5.12: Example of a fixed point number. In this case, with 8 bits available.

[51]

The 20.12 format is the most commonly used in the PlayStation context as it fits the way the

GTE handles data. With 12 fractional bits, the resolution remains constant:

Resolution =

1

212
=

1

4096
.

This allows representing 4096 distinct values in the fractional part, where 4096 corresponds to

1.0. This value is also known as the scaling factor.

The Psy-Q library defines the constant ONE as equivalent to the value 4096. Therefore:

• Adding or subtracting 4096 corresponds to incrementing or decrementing by 1.0.

• Adding 2048 is equivalent to adding 0.5.

102

• Subtracting 6144 is equivalent to subtracting −1.5.

Addition and subtraction operations are straightforward since they simply involve adding or

subtracting the integer values:

1 fix_num1 = 4096; // 1.0

2 fix_num2 = 2048; // 0.5

3 result = fix_num1 + fix_num2; // 6144 = 1.5

Codice 5.7: Addition of Fixed-Point numbers.

Multiplication Multiplication requires careful handling of the result to avoid overflow and

underflow issues. As shown in the figure, when multiplying two fixed-point numbers, the

result has more bits than the original numbers. For example, multiplying two 16.15 fixed-point

numbers results in a 47-bit number: 1 bit for the sign, 32 bits for the integer part, and 15

additional bits for the fractional part.

After multiplication, the result must be scaled back to the original fixed-point format. To do

this, a logical right shift of the excess bits is performed. During this operation:

• Overflow bits (most significant bits) are discarded.

• Underflow bits (least significant bits) are removed.

• The central bits, representing the correct portion of the result, are preserved.

Figure 5.13: Example of multiplication between two fixed-point numbers

[52]

1 mul = 2048; // Represents 0.5 in fixed-point

2 fix_num = (fix_num * mul) >> 15; // Right shift of 15 bits to normalize

Codice 5.8: Multiplication of Fixed-Point numbers.

In this case, the logical right shift by 15 bits preserves the 16.15 format, maintaining precision

while discarding unnecessary bits. This process ensures the result remains compatible with the

original fixed-point system, avoiding errors caused by data size mismatches.

103

Division Division, on the other hand, involves an intermediate step:

1 fix_num = (fix_num * 4096) / scale;

Codice 5.9: Division of Fixed-Point numbers.

Where scale represents the desired scaling value, such as 2048 to divide by 0.5 or 6144 to

divide by 1.5.

Although the PSX does not have an FPU, its C compiler still allows the use of FLOAT variables.

However, these operations are emulated in software, resulting in significantly slower performance

compared to the fixed-point approach.

Sources: [117].

5.7 In-depth Analysis of the PSX BIOS

The BIOS (Basic Input/Output System) is a set of low-level programs stored in a ROM memory

inside the console. These programs are responsible for managing the PlayStation hardware and

providing critical functionalities, including:

1. Hardware Initialization: When the console is powered on, the BIOS is the first software

to execute. It performs a series of system diagnostic checks and initializes the various

hardware components. The CPU executes the BIOS ROM code starting from the reset

vector located at address 0xBFC00000. At this stage, the BIOS acts as an intermediary

between software and hardware.

2. Game Loading: The BIOS handles launching games from the CD-ROM drive. During

this process, it verifies the authenticity of the inserted disc and enforces any regional

restrictions. Specifically, it executes the SYSTEM.CNF file, which contains instructions for

loading the game.

3. Anti-Piracy Measures: As mentioned above, the system includes protection mechanisms

to prevent the execution of pirated copies or games from different regions. This ensures

that only official software can be read by the console.

4. User Interface (UI) Management: When no CD-ROM is inserted, the BIOS loads a

graphical interface commonly known as the shell. This allows the user to listen to audio

CDs or manage saved data on the Memory Card.

5. Advanced Features: The BIOS provides routines for advanced commands, including

multithreading management, standard C language functions, and other support function-

alities.

104

6. Optimization: Direct access to the ROM is slow since it is connected only via an 8-bit

data bus. To improve performance, BIOS APIs are copied into the main RAM during the

boot phase. Approximately 64 KB of main RAM is reserved for the BIOS, forming what

is called the Kernel.

This software is proprietary to Sony and is distributed exclusively with official consoles. The

binary file, named SCPH1001.BIN in the first version, contains the machine code necessary to

execute the BIOS functions. Its distribution or use without authorization is, in theory, illegal.

However, in the context of emulation, many emulators require users to provide a BIOS copy ex-

tracted from their own console. Additionally, there are open-source projects such as OpenBIOS,

mainly designed for educational purposes.

Sources: [73].

Figure 5.14: Top left: the initial boot screen. Top right: the game boot screen. Bottom: the

PSX shell.

105

5.7.1 Reading Joypad Inputs via BIOS

The PSX BIOS simplifies controller interaction through built-in routines that read the joypad

status synchronized with the VSync. These routines allow developers to avoid manual handling

of interrupts, serial communication protocols, and decoding of packets sent by the controller.

1 #include <libetc.h>

2 #include <libgte.h>

3 #include <libgpu.h>

4 #include <stdio.h>

5

6 int main() {

7 // Initialize the joypad management system

8 InitPAD(0, 0, 0, 0); // Configure the controller interface

9 StartPAD(); // Start communication with the joypad

10

11 while (1) {

12 // Read the state of the first controller

13 unsigned short padState = PadRead(0);

14

15 // Check which buttons have been pressed

16 if (padState & PAD_UP) {

17 printf("UP button pressed!\n"); // Check if the UP button is

pressed

18 }

19 if (padState & PAD_DOWN) {

20 printf("DOWN button pressed!\n"); // Check if the DOWN button

is pressed

21 }

22 if (padState & PAD_CROSS) {

23 printf("CROSS button pressed!\n"); // Check if the CROSS

button is pressed

24 }

25

26 // Synchronize execution with VSync to avoid inconsistent reads

27 VSync(0);

28 }

29

30 return 0;

31 }

Codice 5.10: Example of reading PSX controller inputs.

106

5.8 Reading the CD-ROM

5.8.1 CD-ROM

The Sony PlayStation was among the first consoles of its generation, alongside the Sega Saturn,

to use CD-ROMs as the primary medium for storing game resources such as images, textures,

3D models, audio, and video files. The choice of an optical medium was necessary to overcome

the limitations of the PSX’s RAM (2 MB). In contrast, a CD-ROM could hold up to 71 minutes

/ 620 MB of data, providing sufficient space for more elaborate content.

This choice attracted numerous game developers of the era, who preferred to create games for

the PlayStation rather than for the Nintendo 64. A notable example was ”Final Fantasy VII,”

developed for PSX due to the space limitations and high costs of Nintendo 64 cartridges. Until

then, the saga had been released exclusively on Nintendo consoles. Sources: [118].

A CD-ROM stores its data in a continuous spiral divided into sectors and tracks. Inside, there is

also a Table of Contents (TOC) which defines the position of the tracks and their organization

within the sectors. Unlike a hard drive, which uses magnetization to represent binary data,

CDs operate through an optical disc. Specifically, a laser beam is used to read the information

on the disc. When the surface reflects the laser, a ”1” is read; if the surface is ”scratched”

(non-reflective), a ”0” is read.

The data stored follows a file system standard called ISO-9660. This format is the only supported

and compatible one with the PSX, which expects to find files organized in a directory-like

structure with files, folders, and subfolders.

Each sector must be 2048 bytes long (or a multiple thereof). Sectors are organized into tracks

(audio or data), which in turn are organized into sessions. Typically, PlayStation CD-ROMs

contain a single data track.

To create a PSX-compatible CD image, several tools can be used, some provided directly by the

official Sony PlayStation development kit. The main tools used for this thesis were:

• BUILDCD.EXE: Generates an image file (GAME.IMG) from a configuration file called

CDLAYOUT.CTI. This latter is a structured file, similar to XML, which must be created

manually. It contains information such as folder hierarchy, file names, the CD image

name, and other organizational details.

• PSXLICENSE.EXE: Adds the official license file LICENSEE.DAT to the CD image to

comply with Sony’s requirements.

• STRIPISO.EXE: Converts the GAME.IMG file generated by BUILDCD.EXE into a standard

ISO file (GAME.ISO).

107

To simplify the ISO creation process, the following batch script was used:

1 @ECHO OFF

2

3 ECHO Compiling and generating executable...

4 psymake

5

6 ECHO Building IMG file...

7 BUILDCD -l -i GAME.IMG CDLAYOUT.CTI

8

9 ECHO Converting GAME.IMG to GAME.ISO...

10 STRIPISO S 2352 GAME.IMG GAME.ISO

11

12 ECHO Bundling the license into the CD ISO...

13 PSXLICENSE /eu /i GAME.ISO

14

15 ECHO ISO file built successfully!

Codice 5.11: BUILDISO.BAT

The executables BUILDCD.EXE and STRIPISO.EXE are included in the PSY-Q package, located

in \psyq\cdemu\bin. However, STRIPISO.EXE may be incompatible with some operating

systems, including Windows XP. Alternatively, a remake called The Revenge of StripISO is

available on the PSXDev forum.

Another useful tool is PSXLICENSE.EXE, also developed by the PSXDev community, which

allows including license files in ISO images.

Furthermore, the official PlayStation development kit includes software called CDGen, devel-

oped by Sony. This tool can create CTI files, add licenses, and even burn discs. However, it was

not used in this study.

Sources: [119][120][121][122].

108

An example of a CDLAYOUT.CTI file can be:

1 Disc CDROMXA_PSX

2 CatalogNumber 0000000000000

3 LeadIn XA

4 Empty 1000

5 PostGap 150

6 EndTrack

7 Track XA

8 Pause 150

9 Volume ISO9660

10 SystemArea .\LCNSFILE\LICENSEE.DAT

11 PrimaryVolume

12 SystemIdentifier "PLAYSTATION"

13 VolumeIdentifier "Game"

14 VolumeSetIdentifier "Game"

15 PublisherIdentifier "SCEE"

16 DataPreparerIdentifier "SONY"

17 ApplicationIdentifier "PLAYSTATION"

18 LPath

19 OptionalLpath

20 MPath

21 OptionalMpath

22 Hierarchy

23 XAFileAttributes Form1 Audio

24 XAVideoAttributes ApplicationSpecific

25 XAAudioAttributes ADPCM_C Stereo

26 File SYSTEM.CNF

27 XAFileAttributes Form1 Data

28 Source [.]\SYSTEM.TXT

29 EndFile

30 File MAIN.EXE

31 XAFileAttributes Form1 Data

32 Source [.]\MAIN.EXE

33 EndFile

34 EndHierarchy

35 EndPrimaryVolume

36 EndVolume

37 Empty 300

38 PostGap 150

39 EndTrack

40 LeadOut XA

41 Empty 150

42 EndTrack

43 EndDisc

Codice 5.12: CDLAYOUT.CTI

109

In conclusion, every disc contains a SYSTEM.CNF file. This file contains the boot information in

ASCII/TXT format and can be considered similar to AUTOEXEC.BAT or CONFIG.SYS files from

older MS-DOS systems.

The boot information included is:

• BOOT=cdrom:\MAIN.EXE: indicates the main executable to launch.

• TCB=4: specifies the number of thread control blocks.

• EVENT=10: provides information about event control blocks.

• STACK=801FFFF0: defines the initial address for the stack pointer.

In particular, the STACK line sets the initial value of the SP register (used for C language function

calls). During console boot, the BIOS reads this value from the SYSTEM.CNF file and loads it

into the register before starting the ROM. Sources: [123].

5.8.2 The Unique Design of PSX CDs

PSX discs feature a distinctive black-colored underside, a characteristic feature of the console.

This choice by Sony was mainly for marketing purposes, giving the media a unique and recogniz-

able look. Moreover, as explained in a video documentary included in one of the PSX demos,

the black color was believed to act as a deterrent against piracy. However, from a technical

standpoint, these discs did not differ significantly from standard CD-ROMs. Sources: [124].

Figure 5.15: Backside of an original PSX CD-ROM

5.8.3 Types of PlayStation Files

As mentioned in this chapter, a CD contains various types of files. Below is a brief description

of the supported file types. Sources: [125].

110

Streaming Audio and Video Data

• STR (Streaming Data): Format used for streaming data from the CD-ROM, generally

for animations and audio data. Allows sequential reading to ensure continuous playback.

• XA (CD-ROM Voice Data): Format for extended ADPCM audio, mainly used for

interleaved audio with video or general data content.

• BS (MDEC Bitstream Data): Compressed data for macroblock-based animation, used

with the MDEC unit for video decoding.

3D Graphics

• RSD (3D Model Data): Format for 3D models containing vertex and texture information.

• TMD (Modeling Data for OS Library): Format used to represent modeling data struc-

tured for the OS library.

• PMD (High-Speed Modeling Data): An optimized format for fast modeling.

• HMD (Hierarchical Model Data): Complex format integrating hierarchical models with

animation data.

2D Graphics

• TIM (Screen Image Data): Format for static images intended for rendering.

• SDF (Sprite Editor Project File): Project file for creating sprites via a dedicated editor.

• CLT (Palette Data): Contains color palette information.

• ANM (Animation Information): File storing data related to 2D animations.

Sound

• SEQ (PS Sequence Data): Data for audio sequences compatible with the PlayStation.

• VAG (PS Single Waveform Data): Format representing a single audio waveform.

• VAB (PS Sound Source Data): Contains multiple audio data in a format optimized for

the console.

• DA (CD-DA Data): Audio format derived from standard CDs.

111

PDA and Memory Card

• FAT (Memory Card File System Specification): Specifies the file system used on

Memory Cards, organizing data into blocks and sectors for save data management.

5.8.4 Function to Read Binary Data from the Disc

1 char *FileRead(char *filename , u_long *length) {

2 CdlFILE filePosition;

3 int sectorCount;

4 char *buffer;

5

6 buffer = NULL;

7

8 if (CdSearchFile(&filePosition , filename) == NULL) {

9 printf("File %s not found!", filename);

10 } else {

11 // Calculate the number of sectors to read from the file

12 sectorCount = (filePosition.size + 2047) / 2048;

13

14 // Allocate a buffer for the file (must be a multiple of 2048)

15 buffer = (char *)malloc(2048 * sectorCount);

16

17 // Set the read position on the CD

18 CdControl(CdlSetloc , (u_char *)&filePosition.pos, 0);

19

20 // Start reading from the CD

21 CdRead(sectorCount , (u_long *)buffer, CdlModeSpeed);

22

23 // Wait for the read to complete

24 CdReadSync(0, 0);

25

26 *length = filePosition.size;

27 }

28

29 return buffer;

30 }

31

32 long length;

33 char *byteBuffer;

34

35 byteBuffer = (char *)FileRead("ESEMPIO.BIN;1", &length);

Codice 5.13: Example of a C function to read binary files from the disc

112

5.8.5 Anti-Piracy Mechanisms

As described at the beginning of this chapter, PSX CDs are read by a laser that detects irreg-

ularities in the disc’s tracks. Conventional discs have minor fluctuations in their tracks that do

not affect reading, as the laser can automatically calibrate itself.

Sony based its primary protection system on this principle by using a technology called Wobble

Groove. This system involved engraving the TOC onto the disc (during mastering) with a

specific frequency located in the inner section of the CD (also known as the Lead-In area).

Moreover, this information was repeated multiple times to increase error tolerance.

The identifying string within the TOC varied depending on the distribution region:

• SCEA: Sony Computer Entertainment of America.

• SCEE: Sony Computer Entertainment of Europe.

• SCEI: Sony Computer Entertainment of Japan.

This technique not only protected discs from unauthorized duplication but also implemented

regional locking. Unfortunately, this check could be bypassed in various ways. Since the

verification was performed only during boot, it was possible to swap the original disc with a

copy immediately after the initial check. This method was effective but risky, as it could severely

damage the optical drive. To counteract this practice, some games re-initialized the drive during

gameplay to repeat the check.

A second common technique at the time was installing a modchip capable of simulating the

wobble signal, thus allowing the reading of unauthorized copies. For the development of this

project, a console with this hardware modification was used purely for study purposes, to test

demos also on real hardware in the absence of a developer console. Later, Sony introduced a

library called Libcrypt to further strengthen protection.

A noteworthy mention is the anti-piracy system employed in the video game Metal Gear Solid,

developed by Konami. During one of the key stages, the player was required to enter a radio

frequency found only on the back of the original game case. This clever anti-piracy measure

lost effectiveness due to word-of-mouth and the rise of the Internet. Sources: [73].

113

Figure 5.16: Illustration of the Wobble Groove concept

[53]

Figure 5.17: Back of the Metal Gear Solid game case, containing the

radio frequency required by the game

114

5.9 Textures

The concept of realism in software is closely related to the complexity of the geometric model.

Although the PlayStation was capable of rendering a high number of polygons per second, this

ability was insufficient to represent more complex details such as natural surfaces like clouds,

rocks, grass, or skin. This concept does not only apply to the PSX but to any console. Sources:

[72][73][126][127][128][129].

5.9.1 Foundations of Texture Mapping

The concept of Texture Mapping was developed specifically to avoid detailed modeling of every

element. This concept assumes that a geometric object is composed of one or more fragments,

each representing one or more pixels.

Mapping is implemented in the final stage of the rendering pipeline, where a hypothetical

”Fragment Shader” alters the attributes of polygons to simulate the required details.

Figure 5.18: Rendering Pipeline

[54]

Among the main mapping methods are:

• Texture Mapping: Uses images to fill the surfaces of polygons

• Environment Mapping (or Reflection Mapping): exploits images of the surrounding

environment to simulate highly reflective surfaces

• Bump Mapping: modifies normals during rendering to emulate surface three-dimensionality

115

Figure 5.19: Types of ”Mapping”

This chapter will focus mainly on the first point. Thanks to this process, an image is associated

with each geometric surface. The ”Textures” used are composed of a set of ”Texels” (Texture

elements or Texture pixels), which determine the resolution of an image. The width and height

of textures must be powers of two and must be loaded into VRAM before they can be used.

Thanks to Texture Mapping, it is possible to recreate realistic effects using simple geometric

models, significantly reducing the computational cost compared to detailed simulation of every

element. Moreover, changing the visual appearance of an object becomes much easier because

it is sufficient to change the texture associated with it.

Figure 5.20: Mapping a 2D texture onto a

3D surface using ”texture coordinates”.

[55]

Figure 5.21: Resident Evil 2 characters

with texture variations for different outfits.

[56]

116

The Mapping process involves associating the texels of the texture with the ”fragments” of the

geometric model. For each pixel, it is necessary to identify the corresponding point on the

object’s surface. Conversely, given a point on the object, the corresponding point on the texture

must be determined.

With the concept of Direct Mapping, each vertex of the object must be associated with a specific

portion of the texture. Texture coordinates indicating which portion to use are assigned to each

vertex. Subsequently, fragment interpolation fills the other portions of the object. Usually,

texture coordinates range between 0 and 1, where (0, 0) represents the bottom-left corner and

(1, 1) the top-right corner.

Figure 5.22: Region-based mapping from texture to screen coordi-

nates with ”UV boundaries”.

[55]

Figure 5.23: Mapping from texture space to object space, showing

the correspondence between texels and vertices.

[55]

In the case of the PSX, textures are loaded into VRAM along with the display and drawing

117

buffers (making sure not to overwrite them).

The traditional method of mapping textures to the vertices of primitives is based on UV coordi-

nates, which represent specific points of the original texture. The GPU then interpolates these

values and draws them pixel by pixel on the screen. Besides UV coordinates, PlayStation uses

two additional elements: T-PAGES and CLUTs.

5.9.2 Concept of T-PAGE

The term T-PAGE (”Texture Page”) is based on the organization of VRAM into multiple pages.

This structure resembles a grid where each cell represents a specific page. In the case of the

PSX, VRAM is divided into a grid consisting of 16 × 2 cells, each measuring 64 × 256 pixels

at 16-bit color depth.

The actual coordinates of a Texture Page are expressed as XY pairs, while the UV coordinates

of a geometric primitive correspond to offsets relative to the edges of the Texture Page. The

configuration of the latter acts as a reference point for textured primitives, which fetch texture

values starting from the corner at position (0, 0).

Figure 5.24: Structure of a Texture Page

An important aspect to consider concerns the size of 4- and 8-bit textures. Although the width

of these images differs from that of the original image, the UVs do not require adjustments. UVs

always represent the absolute value in pixels and respect the original image width (provided the

color depth is correctly specified in the Texture Page).

However, a key limitation of this system is that UV coordinates can only take values between

0 and 255. For this reason, it is not possible to display a texture larger than 256 × 256 pixels,

regardless of color depth. To manage larger textures, the image must be divided into multiple

primitives that together represent the total area of the image.

118

5.9.3 Concept of CLUT

The term CLUT, or Color Lookup Table, refers to a table containing the colors used to represent

image data in 4- and 8-bit modes. Each pixel of an image acts as an index into the CLUT,

allowing each numeric value to be associated with the corresponding color in the table. It is

organized in VRAM as a 256 × 1 image for 8-bit textures and 16 × 1 for 4-bit textures.

Textures used by the PSX support color depths of 4, 8, and 16 bits per pixel. Since the PSX

video memory addresses pixels in 16-bit WORDs, 4- and 8-bit textures occupy one-quarter and

one-half, respectively, of the effective width of the original image. For this reason, these two

types of textures almost always require a CLUT as a reference.

Thanks to its structure, it is possible to store a significant number of colors while keeping texture

size limited.

Figure 5.25: Structure of a CLUT

5.9.4 Insight on the TIM format

Sony PlayStation manages textures primarily through the TIM file format. It is possible to

obtain this format using the software ”TIM Tool” (included in Sony’s Developers Tools CD).

This software allows generating TIM files from images in BMP, JPG, PNG, and other formats.

The TIM format is designed to contain not only pixel data but also the XY coordinates of the

image within VRAM, as well as information about the CLUT.

As shown in the screenshot in Figure 5.26, the rectangle located in the upper-left corner corre-

sponds to the frame buffer. Inside this area, the green box corresponds to the drawing buffer

while the yellow box represents the display buffer. On the right side of the application, the

selected Texture Page is visible, containing both the texture and the CLUT.

119

Figure 5.26: Main screen of the ”TIM Tool” software

5.9.5 PSX Graphic Artifacts

The visual artifacts associated with the PlayStation have over time become a sort of Visual Iden-

tity of the console. Paradoxically, some modern games artificially reproduce these imperfections

to give them a nostalgic and retro look.

PlayStation Wobbling

This type of artifact, known as ”wobbling,” occurs due to the way PSX handles Texture Mapping.

To understand this phenomenon, it is useful to introduce the following three examples of textures:

• Flat Texture: A simple 2D reference texture

• Affine Texture Mapping: Represents the actual result obtained by the PSX. When trans-

formations such as rotations and translations are applied, the textures undergo noticeable

distortion.

• Perspective-Corrected Texture Mapping: Represents the ideal result where textures are

applied correctly respecting perspective.

120

Figure 5.27: N64 vs PSX Texture Mapping

[57]

121

The main cause of this issue lies in the nature of the PSX GPU. Being a 2D drawing engine,

it does not operate directly in a three-dimensional space and cannot handle depth (Z-axis).

Therefore, the information that the GTE sends to the GPU is limited to XY coordinates, without

any reference to the Z component. This leads to a series of texture distortions when applied to

3D objects.

A technique used to reduce this phenomenon is ”Tessellation,” i.e., subdividing primitives into

smaller triangles. Thanks to this technique, the visual effect becomes less noticeable since the

surface area of the distortion-affected regions is reduced.

Figure 5.28: Example of Tessellation: Triangles are progressively subdivided into smaller

triangles to increase definition.

[58]

Another problem related to the lack of a native Z-buffer is the possible polygon overlap (Z-

fighting, discussed in chapter 5.5).

Figure 5.29: Example of Z-Fight: Polygons overlap due to lack of depth precision (Z-buffer).

[59]

Polygon Jittering

Another characteristic visual artifact of the PSX is ”Polygon Jittering.” This phenomenon does

not directly involve textures but is related to the process of drawing polygons on the screen by the

122

GPU. The main cause of this problem is the absence of sub-pixel rasterization in the console’s

GPU. The XY coordinates used during rendering are treated as integer values without support

for fractional values.

Figure 5.30: Projection of a 3D triangle onto 2D space, highlighting ’Polygon Jittering’ caused

by lack of sub-pixel accuracy

[59]

Consequently, screen coordinates are rounded up or down, snapping to the ”pixel grid.” This

approach causes a visual artifact known as ”snap to grid,” where discrepancies in vertex positions

during rendering become evident. The problem is further amplified by the lack of an FPU unit.

Lack of Mip Mapping

Sony PlayStation did not implement mip mapping techniques, a method where each texture is

scaled and filtered at different resolutions based on the object’s distance from the camera. This

technique is mainly used to reduce aliasing effects on screen and to improve console performance,

avoiding wasting VRAM space with ”high-definition” textures for objects far from the camera.

A criticism often raised against Mip Mapping is that distant objects on the screen appear blurry.

However, when viewed on a CRT, the PSX does not suffer from this problem and appears visually

very sharp. The issue becomes more apparent on high-definition screens, where its graphics

look very pixelated.

The Nintendo 64, unlike its competitor, implements mip mapping, accurate perspective calcu-

lations, and a true Z-buffer.

123

Figure 5.31: Mega Man Legends game comparison between PSX and N64.

[60]

5.10 Audio

As discussed in the chapter dedicated to the PlayStation Sound Processing Unit (SPU), it is

possible to send audio samples to the SPU for playback as independent voices. The SPU can

handle multiple voices simultaneously, and these must necessarily be stored in ADPCM format.

Sources: [112] [130][131][132][133].

5.10.1 Types of ADPCM formats

The SPU features 24 hardware voices. Each of these voices can be used to play audio data,

generate noise, or act as a modulator for another voice. Every voice has a programmable ADSR

(Attack, Decay, Sustain, Release) filter and independent volume control for the left/right audio

channels.

Sony PlayStation supports two main types of ADPCM format:

• XA-ADPCM:

– Data is decompressed directly by the CD-ROM controller.

– Samples are sent to the audio mixer without requiring the use of the SPU’s DRAM.

– Does not support sample looping.

– Offers only two sample rate options (22,050 Hz and 44,100 Hz).

• SPU-ADPCM:

– Supports sample looping and reverb effects.

– Requires the SPU’s DRAM to store samples.

124

– Uses VAG and VAB file formats for playback of short “sound effects.”

Although the decompression algorithm is the same for both formats, in the case of XA-ADPCM

decompression is handled directly by the CD-ROM controller without impacting SPU resources.

The ADPCM format

To better understand the ADPCM format, it is useful to first introduce the concept of PCM

(Pulse Code Modulation). This method is based on uncompressed recording of the audio signal,

sampling and digitally storing it without further processing. Common examples of PCM audio

are WAV files.

PCM:

• The analog audio signal is sampled at regular intervals.

• Each sample is quantized to the nearest available value (chosen from a predefined range

of discrete values).

• PCM files use 16 bits per sample.

As introduced at the beginning of the chapter, PSX uses a compressed version called ADPCM

(Adaptive Differential Pulse Code Modulation). This method encodes audio samples by reducing

their size while maintaining a balance between quality and compression.

ADPCM:

• Reduces audio samples to 4 bits per sample.

• Uses prediction to estimate the next amplitude based on the difference from previous

values.

• Used by SPU-ADPCM and stored in the SPU’s DRAM.

5.10.2 Details on VAG and XA formats

Converting a WAV file to VAG

The PSX audio format does not allow direct playback of WAV files in the disc data track. To

overcome this limitation, it is possible to convert audio files into XA or VAG formats. This

process can be done using the programs ”VAGEdit” for converting WAV to VAG, and ”Movie

Converter” for converting WAV to XA (both tools are provided in the PSYQ library).

125

Figure 5.32: On the left, the ”VAGEdit” software. On the right, ”Movie Converter”.

VAG Header Information

The header of a VAG file contains essential information for the correct interpretation and

playback of audio samples. Below is its typical structure:

• 4 bytes: File identifier (e.g., ”VAGp”).

• 4 bytes: Format version.

• 4 bytes: Reserved field.

• 4 bytes: File size (in bytes).

• 4 bytes: Sampling frequency (e.g., 22,050 Hz).

• 12 bytes: Reserved field.

• 16 bytes: File name.

• Audio data: Audio samples compressed in ADPCM format.

To determine the sampling frequency of a VAG file, one can analyze the header using a hex editor.

This information is crucial for correctly setting elements like pitch during sample playback.

Additionally, it is important to note that the endianness of the fields in the header is typically

Big-Endian, although exceptions may exist depending on implementations.

XA Header Information

• 4 bytes: File identifier.

• 4 bytes: Total file size (in bytes).

126

• 2 bytes: Sampling frequency (e.g., 18,900 Hz or 37,800 Hz).

• 1 byte: Audio channel (mono or stereo).

• 1 byte: Compression information (ADPCM algorithm).

• Audio data: Compressed audio samples.

5.10.3 Management of Audio Tracks on CD-ROMs

Sony PlayStation can utilize the capabilities of CD-ROMs to contain multiple tracks for playback

of music and soundtracks. Tracks, which can be data or audio, allow for two distinct approaches

to integrate audio in a project:

Conversion and insertion into the data track

Audio tracks in WAV format converted into XA or VAG formats can be loaded directly into the

disc’s data track. This approach is considered particularly useful for managing short-duration

audio tracks.

Creation of new audio tracks

It is possible to add independent audio tracks on the CD-ROM, which coexist alongside the data

track. This method allows for a clear separation of game data from the soundtrack, providing

greater flexibility.

To create new tracks, it is necessary to intervene directly in the disc generation process. In this

analysis, the program MKPSXISO, developed by user Lameguy64, was chosen to generate the

required ISO file.

Specifically, it is possible to modify the BATCH script shown in chapter 5.8.1 by replacing the

following command:

ECHO Building IMG file...

BUILDCD -l -i GAME.IMG CDLAYOUT.CTI

with the following amateur software:

ECHO Building IMG file...

MKPSXISO CDLAYOUT.XML

This program also requires a configuration file to define the CD structure, this time in XML

format.

127

<iso_project image_name="GAME.ISO" cue_sheet="GAME.CUE" no_xa="0">

<track type="data">

<identifiers system="PLAYSTATION" application="PLAYSTATION" volume=

"MYDISC"

volume_set="GAME" publisher="ME" data_preparer="

MKPSXISO"

copyright="COPYLEFT"/>

<license file="LCNSFILE\LICENSEE.DAT"/>

<directory_tree>

<file name="SYSTEM.CNF" type="data" source="SYSTEM.TXT"/>

<file name="MAIN.EXE" type="data" source="MAIN.EXE"/>

<file name="01.PRM" type="data" source=".\ASSETS\COMMON\01.PRM"

/>

<file name="01.CMP" type="data" source=".\ASSETS\COMMON\01.CMP"

/>

<file name="POWERUP.VAG" type="data" source=".\ASSETS\SOUND\

POWERUP.VAG"/>

<file name="YOULOOSE.VAG" type="data" source=".\ASSETS\SOUND\

YOULOOSE.VAG"/>

<file name="COUNTGO.VAG" type="data" source=".\ASSETS\SOUND\

COUNTGO.VAG"/>

<dummy sectors="1024"/>

</directory_tree>

</track>

<track type="audio" source=".\ASSETS\MUSIC\TRACK_01.WAV"/>

<track type="audio" source=".\ASSETS\MUSIC\TRACK_02.WAV"/>

<track type="audio" source=".\ASSETS\MUSIC\TRACK_03.WAV"/>

</iso_project>

Codice 5.14: Example of XML file for generating an ISO image with audio and data tracks.

The CUE file

After executing the script, besides the ISO file, a CUE file is generated. This text file describes

the organization of tracks present on the disc, specifying essential information regarding the

type and position of each track.

The CUE file thus becomes the main reference point to be used together with the ISO file, as it

contains all the necessary information for correctly interpreting the CD’s structure.

128

FILE "Tekken 3 (Europe) (Track 1).bin" BINARY

TRACK 01 MODE2/2352

INDEX 01 00:00:00

FILE "Tekken 3 (Europe) (Track 2).bin" BINARY

TRACK 02 AUDIO

INDEX 00 00:00:00

INDEX 01 00:02:00

FILE "Tekken 3 (Europe) (Track 3).bin" BINARY

TRACK 03 AUDIO

INDEX 00 00:00:00

INDEX 01 00:02:00

Codice 5.15: Original CUE file from the game ”Tekken 3” (Namco). [134]

5.10.4 Example of audio implementation

1 #include <libspu.h>

2 #include <libcd.h>

3 int main() {

4 SpuCommonAttr attr; // Initialize the SPU system

5 SpuSetTransferMode(SPU_TRANSFER_BY_DMA);

6 attr.mask = SPU_COMMON_MVOLL | SPU_COMMON_MVOLR;

7 attr.mvol.left = 0x3FFF; // Maximum volume left channel

8 attr.mvol.right = 0x3FFF; // Maximum volume right channel

9 SpuSetCommonAttr(&attr);

10 if (CdInit() == 0) { // Initialize the CD system

11 printf("Error initializing CD-ROM.\n");

12 return -1;

13 }

14 // Specify the track to play

15 int tracknum = 2; // Audio track number

16 int t[] = {tracknum , 0};

17 // Play the specified track

18 if (CdPlay(2, t, 0) == 0) {

19 printf("Error playing track %d.\n", tracknum);

20 return -1;

21 }

22 printf("Playing track %d...\n", tracknum);

23 while (1) {}

24 return 0;

25 }

Codice 5.16: Simple example of audio implementation in C

129

Part III

Creating Demos on PlayStation: A

Technical and Creative Showcase

130

Chapter 6

Demo Disc One (Showcase of Various

Demos)

The first tech demo developed in this analysis consists of a set of subprograms aimed at show-

casing a specific feature or technological upgrade of the console. The main interface of this

software presents eight functions, selectable from a menu where the user can navigate through

the options using the controller’s directional arrows. Once the desired function is highlighted, it

can be launched by pressing the X button, while pressing SELECT returns to the main menu. By

pressing the START button, the project credits can also be viewed. Each program emphasizes a

different aspect, from primitive management for creating 3D elements to texture rendering, up to

demonstrating special effects achievable by leveraging the console’s resources. These features

are presented gradually to provide an overview of the main programming and computer graphics

concepts illustrated in the previous chapters. The demo was developed in the C language by

integrating the libraries provided by the PSYQ SDK and was tested both on an emulator and on

original hardware. The complete project is available on GitHub at the following address: [135].

6.1 Cube Transformations

The ”Cube Transformation” function illustrates the transition to 3D graphics introduced in this

console generation. The PSX was indeed among the first to extensively integrate 3D technology

into the video game market, laying the foundation for a new level of immersion for gamers.

In the demo, the cube is represented by triangles with Gouraud shading. The user can rotate the

model along the X, Y, and Z axes using the Triangle, Square, and Circle buttons respectively.

Pressing the Cross button resets the cube to its original position.

It is also possible to modify the cube’s scale in real time: the Up, Right, and Left directional

131

Figure 6.1: On the left, the menu. On the right, the project credits.

buttons change the scale of a single axis, while pressing the Down button restores the initial

values. The cube can also be uniformly scaled up or down on all three axes using the shoulder

buttons R1 and L2.

The numerical values for rotation and scale are constantly displayed on screen to allow real-time

monitoring of the applied transformations.

Figure 6.2: The ”Cube Transformations” function in execution.

6.2 Bouncing Cubes

The ”Bouncing Cubes” function initially displays a single cube bouncing off the edges of the

screen. This demonstrates the console’s ability to simultaneously manage multiple moving 3D

objects.

The user can interact with the program by pressing the UP button to increase the number

of cubes, while pressing the DOWN button decreases the number. This allows testing the

platform’s capability to maintain adequate performance even as graphical complexity grows. It

is also possible to adjust the cubes’ scale using the Right (increase) and Left (decrease) buttons.

Each cube is composed of six faces, each rendered with two triangles, for a total of twelve

polygons per cube on screen. The colors of each vertex are randomly assigned to make the

132

objects more visible on screen. Finally, the number of cubes and the applied scale are constantly

updated on screen.

Figure 6.3: The ”Bouncing Cubes” function in execution.

6.3 Multiplayer

The ”Multiplayer” function simulates a four-section split screen with the aim of illustrating how

local multiplayer could be managed on a single console. In each of the four screen areas, a

simple colored square is drawn along with an identifying text label.

The program’s structure is based on dividing both the drawing buffer and the screen buffer into

four distinct viewports, within which the corresponding content is rendered.

In a more advanced version of the program, each player connected to a different controller could

independently control their own object, since each viewport corresponds to a separate 3D world,

thus implementing a true local multiplayer system.

Figure 6.4: The ”Multiplayer” function in execution.

133

6.4 Texture Mapping

The ”Texture Mapping” function differs from the previous ones by loading the 3D model of a

cube from a binary file stored on the CD, which defines its vertices, faces, and normals. The

object is then rendered on screen and continuously rotated around the Y-axis, highlighting the

console’s ability to apply different textures in real time.

The two textures, converted into .TIM format and loaded from the CD-ROM, can be selected

during execution by pressing the Square and Triangle buttons (the first represents the University

of Udine logo, while the second depicts a brick wall).

From a logical standpoint, the program first initializes the camera by loading both the 3D model

and its related textures. At each iteration of the main loop, the cube’s position is updated, the

perspective transformation is updated via the GTE, and primitives are added to the ordering

table according to their depth. Subsequently, the PSX handles the on-screen rendering. The

user can also use the directional arrows to move the camera.

This function aims to demonstrate how the console can assign textures to 3D objects, increasing

realism and enhancing the level of detail in a game environment.

Figure 6.5: The ”Texture Mapping” function in execution.

6.5 Fog

The ”Fog” function demonstrates how distant objects can progressively fade into fog, both for

aesthetic reasons and for hardware performance optimization. In the following program, three

cubes are managed and rendered, initially positioned at fixed distances (Z) from the camera. The

user can move the left cube with the Up/Down arrow keys, the central cube with the Left/Right

arrow keys, and the right cube with the Triangle/Circle buttons. Pressing one of these keys

moves the cube forward or backward relative to the viewpoint, while the Cross button resets the

position of all objects.

From a graphical perspective, the program calculates a blend percentage between the cube’s

original color and the ”fog” color (set to a light tone) based on the distance I from the viewpoint.

134

Below a certain threshold (the ”fogNear” value), objects retain almost all of their original color.

Once this distance is exceeded, the radiance (or brightness) of the original color is gradually

reduced, blending with the fog color until it completely disappears beyond the ”fogFar” value.

Theoretically, one way to describe homogeneous fog refers to the transport equation, which

calculates the radiance ! (G) as a function of the medium’s absorption and the distance traveled

by light:

! (G) = 4−^0 |G−G0 | ! (G0) +
(

1 − 4−^0 |G−G0 |
)

!4

where ^0 is the absorption coefficient of the medium, ! (G0) is the initial radiance (the ”original”

color), and !4 represents the background (or ambient) radiance. Practically, fog is often

approximated by blending the object’s color�in with the fog color�fog according to an attenuation

factor 5 :

� = 5 �in + (1 − 5)�fog,

where 5 can be calculated as

5 = 4−(density·I) ,

with density controlling how quickly the color blends with the fog and I the object’s distance

from the observer. Moving beyond fogNear, 5 decreases, allowing the fog color to dominate;

once past fogFar, the object is completely ”engulfed.” This mechanism simulates a continuous

”veil” effect between the object and the observer, improving visual immersion while helping to

optimize performance by hiding distant details.

This technique was widely used in many titles of the era (for example in the game Silent Hill,

Konami) to enhance immersion while optimizing performance since the console does not need

to render details hidden by the fog. Sources: [136].

Figure 6.6: The ”Fog” function in execution.

6.6 Phong

The ”Phong” function represents the implementation of ”Phong Shading” on the PSX. This

example demonstrates how to achieve advanced lighting effects despite the console lacking

135

hardware support for it. This algorithm is renowned for its ability to generate detailed lighting

by computing specular reflection on a per-pixel basis.

Figure 6.7: The ”Phong” function in execution.

The code included in this thesis is an adaptation of the demo known as ”Phong,” present in

the PlayStation Developers Tool Kit sample list provided by Sony. This example was originally

written by the developer Oka. The modifications made aim to contextualize the original example

and optimize it for the purposes of this project.

Excerpt from the original sample:

1 /* $PSLibId: Run-time Library Release 4.3$ */

2 /*

3 * Phong Shading program

4 *

5 * This program includes the function phong_tri , which performs Phong

6 * shading on one triangle. "Triangle color", "normal vectors of

vertices",

7 * and "screen coordinates of vertices" are provided to phong_tri , which

8 * then performs Phong shading and renders the triangle.

9 * Since phong_tri renders directly to video memory, Z-sorting with other

10 * polygons requires rendering and re-texturing in a non-display area.

11 *

12 * 1995,3,29 by Oka

13 * Copyright (C) 1995 by Sony Computer Entertainment

14 * All rights Reserved */

Codice 6.1: Excerpt from Oka’s code

The software in this analysis uses a software approach to simulate ”Phong Shading.” In the PSX

context, this requires a significant computational load compared to ”Gouraud Shading.” The

function phong tri is responsible for computing the interpolated normal for each pixel of the

triangle and applying the lighting model.

Unlike Flat and Gouraud Shading:

136

• Flat Shading: Uses a single normal per primitive (triangle) and applies a uniform color.

The result has faceted surfaces.

• Gouraud Shading: Interpolates the colors of the triangle’s vertices. This technique pro-

duces smoother transitions but does not effectively capture specular highlights. Supported

by PSX.

• Phong Shading: Interpolates the vertex normals across each pixel and calculates lighting

at the pixel level. It offers visually more realistic results but requires a high computational

cost. Not natively supported by PSX.

To compute the lighting, each pixel uses the interpolated normal to calculate lighting by combin-

ing ambient, diffuse, and specular components, following the Phong reflection model. Sources:

[137].

Figure 6.8: Comparison of shading models: Flat, Gouraud, Phong, and Bump Mapping.

6.7 Movie / M-DEC

The ”Movie / M-DEC” function demonstrates the video playback capabilities of the PSX, using

the .STR format to play a short commercial of about thirty seconds from the game Spyro the

137

Dragon.

The implementation of this function is based on the STR player library by user Lameguy64,

which adapts the original example provided by Sony’s PsyQ, developed by authors Yutaka,

Suzu, Masa, and Ume.

The improved library includes the removal of legacy UTF-16 components, enhancements in

code formatting and variable naming, and a simplification of memory allocation and buffering

techniques.

The main playback routine, PlayStr, initializes the video stream with:

• Resolution configuration (xres, yres).

• Framebuffer positioning (xpos, ypos).

• STR file setup via STRFILE.

Key components of the playback process include:

• Ring Buffer: A cyclic memory buffer used for efficient video data management.

• MDEC Initialization: Resets the decoder and manages frame data streaming.

• Video Synchronization: Ensures frames are decoded and rendered sequentially, avoiding

tearing or visual artifacts.

1 int PlayStr(int xres, int yres, int xpos, int ypos, STRFILE *str) {

2 strNumFrames = str->NumFrames;

3 strScreenWidth = xres;

4 strScreenHeight = yres;

5 strFrameX = xpos;

6 strFrameY = ypos;

7 strPlayDone = 0;

8 strDoPlayback(str);

9 return strPlayDone ? 1 : 0;

10 }

Codice 6.2: Simplified snippet of the playback logic.

Playback of .STR files uses the MDEC to decode and display video frames directly into the

framebuffer, leveraging double buffering to achieve smooth transitions.

To convert a video file into .STR format, the following steps must be followed:

1. Convert the original video file to .AVI format using VirtualDub to adjust resolution, frame

rate (15 FPS), and compression.

2. Convert the resulting .AVI file into the .STR format using Sony’s Movie Converter Tool.

138

Thanks to these tools, developers were able to integrate FMV (Full Motion Video) sequences

into their games, adding cinematic elements without the need for additional hardware. Sources:

[138] [139] [140] [141].

Figure 6.9: The ”Movie / M-DEC” function running.

6.8 3D Animation

The ”3D Animation” function showcases a simple 3D animation of a boxer throwing punches.

The program allows adjusting the animation speed via the controller to offer direct control over

the frame rate. The directional buttons Left/Right control the animation speed, while the Cross

button resets the speed to its default value.

The boxer models, exported in TMD format and subsequently converted into binaries loaded

from the CD-ROM, were sourced from the samples of the Graphic CD Development Toolkit,

provided as part of the PSX development tools. This toolkit includes examples of 3D models

and animations illustrating rendering on the PlayStation.

Additionally, a modified version of user Lameguy64’s software was used for loading and man-

aging the .TMD files.

139

The function logic can be described as follows:

1. Loading 3D models.

• The 3D models of the boxer are stored in files tmd 00, tmd 01, etc., and are loaded

into memory at the start of the function.

2. Animation management.

• The animation is structured as a loop that updates the animation frame. The current

frame number and its duration are also displayed on screen.

3. Frame rendering.

• Frames are drawn on the screen using PSX graphic primitives to represent the boxer’s

movements.

The purpose of this function is to demonstrate the PlayStation’s ability to handle real-time 3D

animations. Sources: [142] [143] [144].

Figure 6.10: The ”3D Animation” function running.

140

Chapter 7

Demo Disc Two (WipEout)

Figure 7.1: Game from the WipEout series in action, developed by Psygnosis. From the first

installment in 1995 to the latest in 2021, the series saw the release of around 10 main titles.

7.1 Reverse Engineering WipEout

The game WipEout (1995) marked a turning point for the PlayStation era, standing out due to a

combination of advanced graphics, an electronic soundtrack, and innovative gameplay. Thanks

to the console’s 3D capabilities, the title featured detailed environments and lighting effects

that enhanced the sense of speed and immersion. These elements showcased the potential

of real-time rendering on the PS1, establishing the game as a model for fully exploiting the

available hardware. The soundtrack, curated by electronic music artists such as ”The Chemical

Brothers” and ”Leftfield,” perfectly integrated with the gameplay, setting a benchmark in the

fusion between video game and musical culture.

141

The game quickly became both a commercial success and a strong technical showcase of the

PSX hardware. For these reasons, the title was chosen as the basis for the development of the

second Tech Demo in this analysis, as it allows exploration of the technologies used at the time

and demonstrates their effectiveness in a modern context.

Figure 7.2: Controversial in-game advertising insert.

The demo aims to recreate a simplified version of the game WipEout, focusing on three essential

aspects:

• Loading the track and spaceship: loading the 3D assets into memory and rendering

them.

• Basic movement logic: implementation of basic physics for controlling the spaceship.

• Soundtrack: adding a soundtrack to enrich the audiovisual experience.

To facilitate development and ensure historical accuracy, original binary files (taken from an

original disc version) will be used, recovered thanks to reverse engineering conducted by devel-

oper Dominic Szablewski. Szablewski documented the decoding and organization process of

the game assets on his blog, providing details about their format and functions.

Another significant event for analyzing the game was a leak of the source code of a PC version

of the game in 2022. Although the code was partially unreadable, it still allowed a better

understanding of the overall game structure, thus easing the reverse engineering process.

The complete project is available on GitHub at the following address: [135].

Sources: [145] [146] [147].

142

7.2 Structure of a PRM File (Object)

The game developers used the .PRM format to save three-dimensional objects in a structured way.

This type of binary file is designed to store information such as vertices, normals, primitives,

and rendering-related attributes. Additionally, it allows fast loading and efficient access to data

during runtime.

In the context of WipEout, data related to all the spaceships present were saved in the file

ALLSH.PRM (All Ships). The file structure is illustrated as follows:

• Name: Name of the object (spaceship), represented as a string.

• numverts: Total number of vertices composing the model.

• numnormals: Number of normals associated with the vertices.

• numprimitives: Number of primitives used to draw the model.

• flags: Rendering-related information, such as transparency or special effects.

• origin: Position of the object in global space (vx, vy, vz).

• vertices: Array of vertices, each vertex described by coordinates (vx, vy, vz).

• normals: Array of normals, one for each vertex or primitive.

• primitives: List of primitives, each with additional data such as color, texture type, and

UV coordinates for texture mapping.

The function LoadObjectPRM handles the loading of .PRM files. It uses a combination of helper

functions such as GetChar, GetShortBE, and GetLongBE to decode the binary file data and

populate the corresponding object data structures.

In detail, the loading process for a spaceship consists of the following steps:

1. File opening: The .PRM file is opened in binary read mode, verifying its existence and

accessibility.

2. Reading the Object Name: The object name is read using the GetChar function, which

reads one character at a time from the buffer and stores it.

1 for (i = 0; i < 32; i++) {

2 object->name[i] = GetChar(bytes, &b);

3 }

4 object->name[31] = ’\0’; // Ensure null-termination

3. Reading Basic Parameters: Values numverts, numnormals, numprimitives, and

flags are read. These values are stored as 32-bit integers and read using the GetLongBE

function.

143

1 object->numverts = GetLongBE(bytes, &b);

2 object->numnormals = GetLongBE(bytes, &b);

3 object->numprimitives = GetLongBE(bytes, &b);

4 object->flags = GetLongBE(bytes, &b);

4. Memory Allocation for Vertices and Normals: Memory space is dynamically allocated

to store the number of vertices and normals.

1 object->vertices = (SVECTOR*) malloc(object->numverts *

sizeof(SVECTOR));

2 object->normals = (SVECTOR*) malloc(object->numnormals *

sizeof(SVECTOR));

5. Reading Vertex Coordinates: Each vertex consists of three coordinates stored as 16-bit

integers. These values are read with the GetShortBE function and stored in the SVECTOR

structure.

1 for (i = 0; i < object->numverts; i++) {

2 object->vertices[i].vx = GetShortBE(bytes, &b);

3 object->vertices[i].vy = GetShortBE(bytes, &b);

4 object->vertices[i].vz = GetShortBE(bytes, &b);

5 }

6. Reading Primitives: A primitive represents a face of an object and can be of different

types (triangles or quadrilaterals). For each primitive, the type is identified and its specific

data (vertex coordinates, color, texture, etc.) are read.

7. Memory Management: At the end of loading, the file is closed and the buffer is freed to

avoid memory leaks.

The function sequence can thus be summarized as:

1. Sequential reading of data.

2. Dynamic memory allocation for object components.

3. Populating data structures with information extracted from the .PRM file.

4. Storing primitives and configuring rendering.

144

7.3 Ship Rendering Part 1 (Primitives and Wireframe)

The function RenderObject is used to render a ship on screen. The steps involved are as

follows:

1. Setting the Transformation matrix: Determine the position, orientation, and projection

of objects in the three-dimensional space relative to the camera.

2. Loop over primitives: For each primitive, vertex coordinates are processed and clipping

algorithms are applied.

3. Geometry rendering: Each primitive is drawn on the screen.

Example of rendering a TypeF3 primitive:

1 POLY_F3* poly;

2 F3* prm = (F3*) object->primitives[i].primitive;

3 poly = (POLY_F3*) GetNextPrim();

4 gte_ldv0(&object->vertices[prm->coords[0]]);

5 gte_rtpt();

6 gte_stsxy3(&poly->x0, &poly->x1, &poly->x2);

7 SetPolyF3(poly);

8 addPrim(GetOTAt(GetCurrBuff(), otz), poly);

Codice 7.1: Example of rendering a TypeF3 primitive

The function utilizes the GTE to perform operations such as geometric transformations and

rendering. Finally, the primitives are drawn on the screen using concepts like buffers and

Ordering Tables.

Figure 7.3: Rendered ship(Filled Polygons) Figure 7.4: Rendered ship(Wireframe)

145

7.4 Structure of a CMP File (Texture)

Files with the extension .CMP (Compressed) were used by the WipEout developers to store the

game’s textures in a compressed format, optimizing the use of space on the CD-ROM. In this

analysis, the ALLSH.CMP file contains a list of textures related to the ships in TIM format

compressed using the LZSS (Lempel-Ziv-Storer-Szymanski) algorithm. The latter ensures

effective lossless compression.

The .CMP file is structured as a sequence of long-type values, represented with Little-Endian

ordering (unlike the PRM files, which use Big-Endian). The file is organized with the following

values:

• numtextures: Total number of textures in the file.

• timsize[0]...[n]: Array containing the sizes in bytes of the decompressed TIM textures.

• tim[0]...[n]: Compressed data of each texture.

The main function for handling .CMP files is LoadTextureCMP. This function reads, decom-

presses, and loads the textures into VRAM following these steps:

1. File reading: The function FileRead reads the .CMP file and loads its contents into a

memory buffer.

2. Reading file structure: The number of textures is read, and their offsets are calculated

using the sizes in timsize[].

3. LZSS data decompression: The function ExpandLZSSData decompresses the data.

4. Loading into VRAM: Each texture is loaded into VRAM via the functionUploadTextureToVRAM.

146

7.5 Ship Rendering Part 2 (Textures)

The next step is the application of textures to the ships. The functions responsible for this

operation are UploadTextureToVRAM and RenderObjectWithTexture. The first function

handles:

1. Identifying the texture type.

2. Loading the CLUT (Color Lookup Table).

3. Loading the texture.

Figure 7.5: Rendering of two textured ships.

The second function is responsible for applying the texture during rendering:

1 void RenderObjectWithTexture(Object3D *object) {

2 for (int i = 0; i < object->numprimitives; i++) {

3 switch (object->primitives[i].type) {

4 case PRIM_FT3: {

5 POLY_FT3 *poly;

6 FT3 *prm = (FT3*) object->primitives[i].primitive;

7 // FT3: Triangle primitive with texture

8 poly = (POLY_FT3*) GetNextPrim();

9 // UV coordinates calculation: Load object vertices and

transform them

10 gte_ldv0(&object->vertices[prm->coords[0]]);

11 gte_rtpt();

12 gte_stsxy3(&poly->x0, &poly->x1, &poly->x2);

13

14 // Assign UV coordinates to the primitive

15 setUVWH(poly,

16 prm->uv[0][0], prm->uv[0][1],

17 prm->uv[1][0], prm->uv[1][1],

147

18 prm->uv[2][0], prm->uv[2][1]);

19

20 // Set TPage and CLUT

21 setTPage(poly, object->tpage); // TPage: texture page in

VRAM

22 setClut(poly, object->clut); // CLUT: Color Lookup Table

for texture

23 // Add the primitive to the Ordering Table

24 SetPolyFT3(poly);

25 addPrim(GetOTAt(GetCurrBuff(), otz), poly);

26 break;

27 }

28 case PRIM_FT4: {

29 POLY_FT4 *poly;

30 FT4 *prm = (FT4*) object->primitives[i].primitive;

31 // FT4: Quadrilateral primitive with texture

32 poly = (POLY_FT4*) GetNextPrim();

33 // UV coordinates calculation: Load object vertices and

transform them

34 gte_ldv0(&object->vertices[prm->coords[0]]);

35 gte_rtpt();

36 gte_stsxy4(&poly->x0, &poly->x1, &poly->x2, &poly->x3);

37

38 // Assign UV coordinates to the primitive

39 setUVWH(poly,

40 prm->uv[0][0], prm->uv[0][1],

41 prm->uv[1][0], prm->uv[1][1],

42 prm->uv[2][0], prm->uv[2][1],

43 prm->uv[3][0], prm->uv[3][1]);

44

45 // Set TPage and CLUT

46 setTPage(poly, object->tpage); // TPage: texture page in

VRAM

47 setClut(poly, object->clut); // CLUT: Color Lookup Table

for texture

48 // Add the primitive to the Ordering Table

49 SetPolyFT4(poly);

50 addPrim(GetOTAt(GetCurrBuff(), otz), poly);

51 break;

52 }

53 default:

54 break;

55 }

56 }

57 }

148

7.6 Structure of TRV, TRF, and TRS Files (Track Vertices,

Faces, Sections)

The following two chapters analyze the process of loading and rendering the track within the

software, following the methods used by the developers at the time. In the original game context,

the track is stored on the CD-ROM through a series of files, each containing specific information:

• Track.TRV: defines the vertices that make up the track.

• Track.TRF: describes the faces of the track.

• Track.TRS: divides the track into sections.

• Track.VEW: specifies visibility lists for each section.

The track is organized following a well-defined hierarchy. It is composed of sections, each

including faces, which in turn are defined by vertices. This structure is represented through a

linked-list of sections that allows navigation both forwards and backwards. The first section is

identified as the starting point of the track, while the last reconnects to the first, forming a loop.

The faces constituting the track are represented by primitives, specifically quadrilaterals. Addi-

tionally, each section has a VECTOR type variable called center. This defines the center of the

sector, a crucial piece of information used to determine the sector’s distance from the camera

and evaluate whether the section should be rendered or not.

Figure 7.6: Example of track structure: Sections are shown in red, faces in blue, and the section

center in yellow. The green bidirectional arrows represent the linked-list.

This structure is managed in the demo software through three main data structures (struct):

Face, Section, and Track.

149

1 typedef struct Face {

2 short indices[4]; // Indices of the four vertices of the face.

3 char flags; // Flags describing the properties of the face.

4 SVECTOR normal; // Normal to the face for lighting calculation.

5 CVECTOR color; // Color of the face.

6 char texture; // ID of the texture associated with this face.

7 short clut; // Color Look-Up Table (CLUT).

8 short tpage; // Indicates the texture page in VRAM.

9 short u0, v0; // UV coordinates of the first vertex of the texture.

10 short u1, v1; // UV coordinates of the second vertex of the texture.

11 short u2, v2; // UV coordinates of the third vertex of the texture.

12 short u3, v3; // UV coordinates of the fourth vertex of the texture.

13 } Face;

1 typedef struct Section {

2 short id; // Unique identifier of the section.

3 short flags; // Flags representing properties of the section.

4

5 struct Section *prev; // Pointer to the previous section.

6 struct Section *next; // Pointer to the next section.

7

8 VECTOR center; // Geometric center of the section.

9 SVECTOR normal; // Normal of the section, for calculating

orientations or visual effects.

10

11 short numfaces; // Number of faces present in the section.

12 short facestart; // Index of the first face in the section.

13 } Section;

1 typedef struct Track {

2 long numVertices; // Total number of vertices in the track.

3 VECTOR *vertices; // Pointer to the array of vertices.

4

5 long numFaces; // Total number of faces in the track.

6 Face *faces; // Pointer to the array of faces.

7

8 long numSections; // Total number of sections in the track.

9 Section *sections; // Pointer to the array of sections , organized as a

circular linked list.

10 } Track;

Codice 7.2: Track-related structs used in the Tech Demo.

The Track.VEW file, although not included in the current analysis to simplify track implemen-

tation, provides a visibility mapping of each section relative to others. It is organized into five

150

views:

• North view: includes sections visible in front of the ship.

• South view: includes sections visible behind the ship.

• East view: includes sections visible to the right of the ship.

• West view: includes sections visible to the left of the ship.

• Global view: includes all sections visible around the ship (used for modes such as replay

or demo).

7.7 Track Rendering

The track rendering is managed through a pipeline that includes loading the track data, handling

its textures, and rendering the faces/sections of the track.

The first step consists of loading the geometric data of the track from the corresponding files

seen in the previous chapter, starting from the vertices contained in the TRV file. These are read

from the file and stored in an array within the Track struct.

1 void LoadTrackVertices(Track *track, char *filename) {

2 u_long length, b = 0;

3 u_char *bytes = (u_char*) FileRead(filename , &length);

4 if (bytes == NULL) {

5 printf("Error reading %s from the CD.\n", filename);

6 return;

7 }

8

9 track->numVertices = length / BYTES_PER_VERTEX; // Total number of

vertices in the track.

10 track->vertices = (VECTOR*) malloc(track->numVertices * sizeof(VECTOR));

// Allocate memory for the vertices.

11

12 for (u_long i = 0; i < track->numVertices; i++) {

13 track->vertices[i].vx = GetLongBE(bytes, &b); // X coordinate of the

vertex.

14 track->vertices[i].vy = GetLongBE(bytes, &b); // Y coordinate of the

vertex.

15 track->vertices[i].vz = GetLongBE(bytes, &b); // Z coordinate of the

vertex.

16 }

17

18 free(bytes); // Free the temporary buffer.

19 }

151

Codice 7.3: Function LoadTrackVertices

Next, the faces are defined, which will compose the surface of the track. These are loaded from

the TRF file.

1 void LoadTrackFaces(Track *track, char *filename , u_short texturestart) {

2 u_long length, b = 0;

3 u_char *bytes = (u_char*) FileRead(filename , &length);

4

5 if (bytes == NULL) {

6 printf("Error reading %s from the CD.\n", filename);

7 return;

8 }

9

10 track->numfaces = length / BYTES_PER_FACE;

11 track->faces = (Face*) malloc(track->numfaces * sizeof(Face));

12

13 for (u_long i = 0; i < track->numfaces; i++) {

14 Face *face = &track->faces[i];

15 face->indices[0] = GetShortBE(bytes, &b);

16 face->indices[1] = GetShortBE(bytes, &b);

17 face->indices[2] = GetShortBE(bytes, &b);

18 face->indices[3] = GetShortBE(bytes, &b);

19

20 face->texture += texturestart;

21 }

22

23 free(bytes);

24 }

Codice 7.4: Function LoadTrackFaces

The track rendering is then divided into sections. Thanks to this approach, it is possible to

optimize the rendering process by displaying only the sections visible to the camera.

1 void RenderTrackSection(Track *track, Section *section, Camera *camera,

u_short numsubdivs) {

2 MATRIX worldmat , viewmat;

3 SVECTOR v0, v1, v2, v3;

4 for (int i = 0; i < section->numfaces; i++) {

5 Face *face = track->faces + section->facestart + i;

6 v0.vx = track->vertices[face->indices[0]].vx - camera->position.vx;

7 v1.vx = track->vertices[face->indices[1]].vx - camera->position.vx;

8 RenderQuadRecursive(face, &v0, &v1, ...);

9 }

152

10 }

Codice 7.5: Function RenderTrackSection

The function RenderTrackAhead is responsible for selecting only the sections visible around

the ship. In this way, only the necessary sections are rendered.

1 void RenderTrackAhead(Track *track, Section *startsection , Camera *camera)

{

2 Section *currsection = startsection;

3

4 for (u_short i = 0; i < 20; i++) {

5 RenderTrackSection(track, currsection , camera, i < 6 ? 1 : 2);

6 currsection = currsection ->next;

7 }

8 }

Codice 7.6: Function RenderTrackAhead

Each face is assigned its texture. The function LoadTextureCMP reads the texture data in CMP

format and decompresses it before loading it into VRAM, as explained in chapter 7.5.

1 void LoadTextureCMP(char *filenamecmp , char *filenamettf) {

2 u_long b, length;

3 u_char *bytes;

4 static void *timsbaseaddr;

5 static long timoffsets[400];

6

7 bytes = (u_char*) FileRead(filenamecmp , &length);

8

9 if (bytes == NULL) {

10 printf("Error reading %s from the CD.\n", filenamecmp);

11 return;

12 }

13 b = 0;

14 u_short numtextures = GetLongLE(bytes, &b);

15 // Decompressione dei dati

16 timsbaseaddr = malloc(totaltimsize);

17 ExpandLZSSData(&bytes[b], timsbaseaddr);

18 free(bytes);

19

20 // Caricamento delle texture nella VRAM

21 for (u_short i = 0; i < numtextures; i++) {

22 Texture *texture = UploadTextureToVRAM(timoffsets[i]);

23 if (texture != NULL) {

24 texturestore[texturecount++] = texture;

25 }

153

26 }

27 }

Codice 7.7: Function LoadTextureCMP

Figure 7.7: Track rendering.

7.8 Implementation of Physics, Gameplay, and Sound Effects

This chapter analyzes the implementation of the gameplay loop and how physics is applied in

the game. In the original WipEout, the ships do not touch the track; rather, they hover above it.

To replicate this effect, it was necessary to manage player movement, interaction with the track,

and forces acting on the ship.

First, the function ShipInit configures the ship by positioning it at the starting point and

associating it with the nearest section of the track.

1 void ShipInit(Ship *ship, Track *track, VECTOR *startPos) {

2 Section *current;

3 VECTOR delta;

4 long distMagnitude , minDist;

5

6 // Initialize the ship’s position and dynamic parameters

7 ship->object->position = *startPos;

8 ship->vel = ship->acc = ship->thrust = ship->drag = (VECTOR) {0, 0, 0};

9 ship->yaw = ship->pitch = ship->roll = 0;

10 ship->thrustMax = 15000;

11 [...]

12

13 // Find the closest section of the track

14 current = track->sections;

15 minDist = 99999999;

16 do {

154

17 // Calculate the distance and update the closest section

18 [...]

19 current = current->next;

20 } while (current != track->sections);

21 }

Codice 7.8: Function ShipInit

Next, the function ShipUpdate calculates the new position of the ship considering various

forces such as gravity, friction, and thrust.

1 void ShipUpdate(Ship *ship) {

2 VECTOR force = {0, 0, 0};

3 VECTOR noseVelocity , baseToShip;

4 long dotProduct , height;

5

6 // Calculate the ship’s orientation (right, up, forward) based on yaw,

pitch, and roll

7 [...]

8

9 // Calculate the thrust force and forward-projected velocity

10 [...]

11

12 // Determine the height between the ship and the track

13 baseToShip.vx = ship->object->position.vx -

ship->section->baseVertex.vx;

14 baseToShip.vy = ship->object->position.vy -

ship->section->baseVertex.vy;

15 baseToShip.vz = ship->object->position.vz -

ship->section->baseVertex.vz;

16

17 dotProduct = (ship->section->normal.vx * baseToShip.vx +

18 ship->section->normal.vy * baseToShip.vy +

19 ship->section->normal.vz * baseToShip.vz) >> 12;

20

21 height = max(dotProduct , 50);

22

23 // Calculate the total force (attraction , repulsion , thrust) and

update acceleration , velocity, and position

24 [...]

25

26 // Update angular rotation and realign the ship

27 [...]

28

29 // Update nearest track section and orientation matrix

30 UpdateShipNearestSection(ship);

31 [...]

155

32 }

Codice 7.9: Function ShipUpdate

The ship updates the nearest section of the track through the functionUpdateShipNearestSection.

1 void UpdateShipNearestSection(Ship *ship) {

2 Section *current = ship->section;

3 VECTOR delta;

4 long distMagnitude , minDist = 99999999;

5

6 // Search for the nearest section among the 4 adjacent ones

7 for (u_short i = 0; i < 4; i++) {

8 // Calculate distance from the current section

9 delta.vx = current->center.vx - ship->object->position.vx;

10 delta.vy = current->center.vy - ship->object->position.vy;

11 delta.vz = current->center.vz - ship->object->position.vz;

12 distMagnitude = SquareRoot12(delta.vx * delta.vx + delta.vy *

delta.vy + delta.vz * delta.vz);

13

14 // Update the nearest section

15 if (distMagnitude < minDist) {

16 minDist = distMagnitude;

17 ship->section = current;

18 }

19

20 current = current->next; // Next section

21 }

22 }

Codice 7.10: Function UpdateShipNearestSection

The player interacts with the ship via the joypad, controlling its behavior by pressing buttons.

1 void ShipUpdate(Ship *ship) {

2 VECTOR force, noseVelocity , baseToShip;

3 long dotProduct , height;

4 short sinX, cosX, sinY, cosY, sinZ, cosZ;

5

6 // Calculate sine and cosine for yaw, pitch, and roll [...]

7

8 // Calculate the right, up, and forward vectors based on the ship’s

orientation [...]

9

10 // Calculate the thrust force based on the forward direction [...]

11

12 // Calculate velocity and forward-projected velocity [...]

156

13

14 // Determine the height between the ship and the track [...]

15

16 // Calculate the total force (attraction , repulsion , and thrust) [...]

17

18 // Update the ship’s acceleration , velocity , and position [...]

19

20 // Update rotation (yaw, pitch, and roll) based on angular velocity

[...]

21

22 // Update the nearest section and the orientation matrix [...]

23 }

Codice 7.11: Function ShipUpdate

Sound effects, such as the initial countdown and background music, are managed by the SPU.

The function PlayAudioTrack starts a specific track, while AudioPlay handles the triggering

of sound effects.

1 void AudioPlay(int voiceChannel) {

2 // Start audio playback for the specified channel

3 SpuSetKey(SpuOn, voiceChannel);

4 }

Codice 7.12: Function AudioPlay

1 void PlayAudioTrack(u_short trackNumber) {

2 u_int i;

3 u_char param[4];

4 u_char result[8];

5

6 // Transfer can be done via I/O or DMA

7 SpuSetTransferMode(SpuTransByDMA);

8

9 // Get CD TOC (Table of Contents) [...]

10

11 // Prevent out-of-bounds position [...]

12

13 // Set CD parameters: Report mode ON, CD-DA ON (see LibOvr.pdf, page 188)

14 param[0] = CdlModeRept | CdlModeDA;

15

16 // Set mode

17 CdControlB(CdlSetmode , param, 0);

18

19 // Wait for three VSyncs

20 VSync(3);

21

157

22 // Play the track from the TOC array

23 CdControlB(CdlPlay, (u_char*) &loc[trackNumber], 0);

24 }

Codice 7.13: Function PlayAudioTrack

Finally, the camera follows the ship, dynamically adapting to its position and direction. To

achieve this, the function LookAt is used, which calculates the camera transformation matrix

based on position, direction, and the ”UP” vector.

1 void LookAt(Camera *camera, VECTOR *eye, VECTOR *target, VECTOR *up) {

2 VECTOR xRight, yUp, zForward , pos, temp;

3 VECTOR x, y, z;

4

5 // Calculate the zForward vector (direction from camera to target) and

normalize it

6 zForward.vx = target->vx - eye->vx;

7 zForward.vy = target->vy - eye->vy;

8 zForward.vz = target->vz - eye->vz;

9 VectorNormal(&zForward , &z);

10

11 // Calculate the xRight vector (cross product between zForward and up)

and normalize it

12 VectorCross(&z, up, &xRight);

13 VectorNormal(&xRight, &x);

14

15 // Calculate the yUp vector (cross product between zForward and

xRight) and normalize it

16 VectorCross(&z, &x, &yUp);

17 VectorNormal(&yUp, &y);

18

19 // Assign vectors x, y, z to the lookat matrix [...]

20

21 // Invert the camera position (eye) to obtain the translation

22 pos.vx = -eye->vx;

23 pos.vy = -eye->vy;

24 pos.vz = -eye->vz;

25

26 // Save the rotation part in the rotation matrix rotmat [...]

27

28 // Combine rotation and translation in the lookat matrix

29 ApplyMatrixLV(&camera->lookat, &pos, &temp);

30 TransMatrix(&camera->lookat, &temp);

31 }

Codice 7.14: Function LookAt

158

159

Part IV

Resources and Final Considerations

160

Chapter 8

Conclusions

Software development for the PlayStation remains, despite its thirty-year history, a subject of

great interest both for fans of Sony’s console and for retrocomputing enthusiasts. Thanks to

numerous online communities and dedicated forums, it is possible to access original documen-

tation, tools, and hobbyist software for developing applications for the original hardware. The

work carried out in this thesis focused not only on retracing the techniques and technologies

of the era but also on addressing the challenges encountered by programmers through the use

of original tools or their equivalents. This approach made it possible to highlight both the

limitations of the console and the innovations introduced by the PlayStation to the videogame

industry.

The experimental chapters, centered on the development of the two tech demos, allowed a

practical evaluation of the console’s capabilities, confronting the memory, computation, and

hardware architecture constraints of the PSX. In particular, their development enabled the

exploration of advances such as 3D rendering, advanced audio and video handling, and the use

of the CD-ROM.

Ultimately, this work aims to act as a bridge to the past, emphasizing and valuing both the

weaknesses and the strengths of a console that defined a generation.

161

Glossario

ABI Application Binary Interface

ADPCM Adaptive Differential Pulse Code

Modulation

API Application Programming Interface

AV Audio/Video

BSS Block Started by Symbol

CISC Complex Instruction Set Computer

CLUT Color Lookup Table

CPI Cycles Per Instruction

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DA Digital Audio

DCT Discrete Cosine Transform

DC Direct Current

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

DTL-H Development Tool Hardware

E3 Electronic Entertainment Expo

EDO Extended Data Out

FIFO First In, First Out

FMV Full Motion Video

FPU Floating Point Unit

GNU GNU’s Not Unix

GPU Graphics Processing Unit

GTE Geometry Transformation Engine

I/O Input/Output

ISA Industry Standard Architecture

JPEG Joint Photographic Experts Group

LIFO Last In, First Out

LSB Least Significant Byte

MDEC Motion Decoder / Macroblock

Decoder

MMU Memory Management Unit

MIPS Microprocessor Without Interlocked

Pipeline Stages

MSB Most Significant Byte

MPEG Moving Picture Experts Group

NES Nintendo Entertainment System

NTSC National Television System Committee

OT Ordering Table

PAL Phase Alternating Line

PCM Pulse Code Modulation

PDA Personal Digital Assistant

RAM Random Access Memory

RGB Red, Green, Blue

RISC Reduced Instruction Set Computer

RF Radio Frequency

RFU Radio Frequency Unit

SCEA Sony Computer Entertainment of

America

SCEE Sony Computer Entertainment of

Europe

SCEI Sony Computer Entertainment of Japan

SCPH Sony Computer PlayStation Hardware

SDK Software Development Kit

SDevTC Sony Developer Toolchain

SNES Super Nintendo Entertainment System

162

SoC System On a Chip

SPU Sound Processing Unit

STP Special Transparency Processing

SRAM Static Random-Access Memory

T-PAGE Texture Page

TCB Thread Control Blocks

TEXEL Texture Element

TOC Table of Contents

ULP Unit of Least Precision

VBlank Vertical Blanking

VRAM Video Random Access Memory

XA Extended Architecture

Istruzioni MIPS menzionate

LI Load Immediate

LA Load Address

LUI Load Unsigned Immediate

LW Load Word

LH Load Half

LB Load Byte

LHU Load Half Unsigned

LBU Load Byte Unsigned

SW Store Word

SH Store Half

SB Store Byte

J Jump

JAL Jump and Link

JR Jump Register

JALR Jump and Link Register

BEQ Branch if Equal

BNE Branch if Not Equal

BLEZ Branch if Less Than or Equal to Zero

BGEZ Branch if Greater Than or Equal to

Zero

BLTZ Branch if Less Than Zero

BGTZ Branch if Greater Than Zero

BLT Branch if Less Than

BLE Branch if Less Than or Equal

NOP No Operation

ADDU Add Unsigned

ADD Addition

ADDI Add Immediate

ADDIU Add Immediate Unsigned

SUB Subtract

SUBU Subtract Unsigned

MULT Multiply

MULTU Multiply Unsigned

DIV Divide

DIVU Divide Unsigned

MFHI Move From HI

MFLO Move From LO

AND Logical And

ANDI Logical And Immediate

OR Logical Or

ORI Logical Or Immediate

XOR Exclusive Or

XORI Exclusive Or Immediate

SLL Shift Left Logical

SRL Shift Right Logical

SRA Shift Right Arithmetical

SLLV Shift Left Logical Variable

SRLV Shift Right Logical Variable

SRAV Shift Right Arithmetic Variable

163

Visual Documentation

[1] Edge (magazine). Page Version ID: 1256577091. Nov. 10, 2024. url: https://en.

wikipedia.org/w/index.php?title=Edge_(magazine)&oldid=1256577091

(visited on 11/17/2024).

[2] 30 anni di PlayStation: ’Nemmeno Sony credeva nel successo di PS1’, rivela Kutaragi.

Everyeye Videogiochi. Section: Videogiochi. Sept. 29, 2024. url: https://www.

everyeye.it/notizie/30- anni- playstation- nemmeno- sony- credeva-

successo-ps1-rivela-kutaragi-745445.html (visited on 11/13/2024).

[3] CD-ROM - Wikipedia. url: https://en.wikipedia.org/wiki/CD-ROM (visited on

11/13/2024).

[4] Sony Interactive Entertainment. Page Version ID: 1257115515. Nov. 13, 2024. url:

https://en.wikipedia.org/w/index.php?title=Sony_Interactive_

Entertainment&oldid=1257115515 (visited on 11/13/2024).

[5] Psygnosis. Page Version ID: 1255624711. Nov. 5, 2024. url: https : / / en .

wikipedia.org/w/index.php?title=Psygnosis&oldid=1255624711 (visited

on 11/13/2024).

[6] Destruction Derby Images - LaunchBox Games Database. url: https://gamesdb.

launchbox-app.com/games/images/10354-destruction-derby (visited on

11/18/2024).

[7] Wipeout Images - LaunchBox Games Database. url: https://gamesdb.launchbox-

app.com/games/images/11090-wipeout (visited on 11/18/2024).

[8] Novastorm Images - LaunchBox Games Database. url: https : / / gamesdb .

launchbox-app.com/games/images/31091-novastorm (visited on 11/18/2024).

[9] Spyro the Dragon Images - LaunchBox Games Database. url: https://gamesdb.

launchbox- app.com/games/images/4730- spyro- the- dragon (visited on

11/18/2024).

[10] Crash Bandicoot: Warped Images - LaunchBox Games Database. url: https://

gamesdb.launchbox-app.com/games/images/493-crash-bandicoot-warped

(visited on 11/18/2024).

164

https://en.wikipedia.org/w/index.php?title=Edge_(magazine)&oldid=1256577091
https://en.wikipedia.org/w/index.php?title=Edge_(magazine)&oldid=1256577091
https://www.everyeye.it/notizie/30-anni-playstation-nemmeno-sony-credeva-successo-ps1-rivela-kutaragi-745445.html
https://www.everyeye.it/notizie/30-anni-playstation-nemmeno-sony-credeva-successo-ps1-rivela-kutaragi-745445.html
https://www.everyeye.it/notizie/30-anni-playstation-nemmeno-sony-credeva-successo-ps1-rivela-kutaragi-745445.html
https://en.wikipedia.org/wiki/CD-ROM
https://en.wikipedia.org/w/index.php?title=Sony_Interactive_Entertainment&oldid=1257115515
https://en.wikipedia.org/w/index.php?title=Sony_Interactive_Entertainment&oldid=1257115515
https://en.wikipedia.org/w/index.php?title=Psygnosis&oldid=1255624711
https://en.wikipedia.org/w/index.php?title=Psygnosis&oldid=1255624711
https://gamesdb.launchbox-app.com/games/images/10354-destruction-derby
https://gamesdb.launchbox-app.com/games/images/10354-destruction-derby
https://gamesdb.launchbox-app.com/games/images/11090-wipeout
https://gamesdb.launchbox-app.com/games/images/11090-wipeout
https://gamesdb.launchbox-app.com/games/images/31091-novastorm
https://gamesdb.launchbox-app.com/games/images/31091-novastorm
https://gamesdb.launchbox-app.com/games/images/4730-spyro-the-dragon
https://gamesdb.launchbox-app.com/games/images/4730-spyro-the-dragon
https://gamesdb.launchbox-app.com/games/images/493-crash-bandicoot-warped
https://gamesdb.launchbox-app.com/games/images/493-crash-bandicoot-warped

[11] Silent Hill Images - LaunchBox Games Database. url: https : / / gamesdb .

launchbox-app.com/games/images/984-silent-hill (visited on 11/18/2024).

[12] Metal Gear Solid Images - LaunchBox Games Database. url: https://gamesdb.

launchbox - app . com / games / images / 187 - metal - gear - solid (visited on

11/18/2024).

[13] Final Fantasy VII Images - LaunchBox Games Database. url: https://gamesdb.

launchbox- app.com/games/images/503- final- fantasy- vii (visited on

11/18/2024).

[14] Tekken 3 Images - LaunchBox Games Database. url: https://gamesdb.launchbox-

app.com/games/images/2414-tekken-3 (visited on 11/18/2024).

[15] Bruarn. Models of PlayStation. May 28, 2022. url: https://commons.wikimedia.

org/w/index.php?curid=118426033 (visited on 11/14/2024).

[16] Image of PlayStation SCPH-1000 Box. url: https://i.ebayimg.com/images/g/

InIAAOSwINZml-lr/s-l1600.webp (visited on 11/14/2024).

[17] Vano disco del modello SCPH-1000. url: https://imgur.com/8tIZvXN (visited on

11/14/2024).

[18] Sony Playstation SCPH-100x GPU Specs. TechPowerUp. Nov. 14, 2024. url: https:

//www.techpowerup.com/gpu-specs/sony-playstation-scph-100x-gpu.

b8176 (visited on 11/14/2024).

[19] PlayStation Serie SCPH-1000 — PlayStation Generation. url: https : / / www .

playstationgeneration.it/2011/04/playstation-serie-scph-1000.html

(visited on 11/13/2024).

[20] Fighting Box. url: https://cdn.suruga-ya.com/database/pics_webp/game/

140010075.jpg.webp (visited on 11/14/2024).

[21] Sony Playstation SCPH-100x GPU Specs. TechPowerUp. Nov. 14, 2024. url: https:

//www.techpowerup.com/gpu-specs/sony-playstation-scph-100x-gpu.

b8176 (visited on 11/14/2024).

[22] SONY Playstation SCPH-5500. url: https://bangladesh.desertcart.com/

products/14914474-sony-playstation-1-complete-system-console-ps-

1-psx (visited on 11/14/2024).

[23] Obsolete Sony [@ObsoleteSony]. Originally, the PlayStation was meant to support

Video CD, but this feature was limited to the SCPH-5903 model available only in

Hong Kong and Taiwan. Sony released this console due to the popularity of VCD

in these regions, but it didn’t sell well. Twitter Post. Aug. 21, 2024. url: https:

//x.com/ObsoleteSony/status/1826212657965289826 (visited on 11/14/2024).

[24] Sony Playstation SCPH-700x GPU Specs. TechPowerUp. Nov. 14, 2024. url: https:

//www.techpowerup.com/gpu-specs/sony-playstation-scph-700x-gpu.

b8180 (visited on 11/14/2024).

165

https://gamesdb.launchbox-app.com/games/images/984-silent-hill
https://gamesdb.launchbox-app.com/games/images/984-silent-hill
https://gamesdb.launchbox-app.com/games/images/187-metal-gear-solid
https://gamesdb.launchbox-app.com/games/images/187-metal-gear-solid
https://gamesdb.launchbox-app.com/games/images/503-final-fantasy-vii
https://gamesdb.launchbox-app.com/games/images/503-final-fantasy-vii
https://gamesdb.launchbox-app.com/games/images/2414-tekken-3
https://gamesdb.launchbox-app.com/games/images/2414-tekken-3
https://commons.wikimedia.org/w/index.php?curid=118426033
https://commons.wikimedia.org/w/index.php?curid=118426033
https://i.ebayimg.com/images/g/InIAAOSwINZml-lr/s-l1600.webp
https://i.ebayimg.com/images/g/InIAAOSwINZml-lr/s-l1600.webp
https://imgur.com/8tIZvXN
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-100x-gpu.b8176
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-100x-gpu.b8176
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-100x-gpu.b8176
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-1000.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-1000.html
https://cdn.suruga-ya.com/database/pics_webp/game/140010075.jpg.webp
https://cdn.suruga-ya.com/database/pics_webp/game/140010075.jpg.webp
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-100x-gpu.b8176
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-100x-gpu.b8176
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-100x-gpu.b8176
https://bangladesh.desertcart.com/products/14914474-sony-playstation-1-complete-system-console-ps-1-psx
https://bangladesh.desertcart.com/products/14914474-sony-playstation-1-complete-system-console-ps-1-psx
https://bangladesh.desertcart.com/products/14914474-sony-playstation-1-complete-system-console-ps-1-psx
https://x.com/ObsoleteSony/status/1826212657965289826
https://x.com/ObsoleteSony/status/1826212657965289826
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-700x-gpu.b8180
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-700x-gpu.b8180
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-700x-gpu.b8180

[25] Keep Fronting [keepfronting]. Ad for the PS1 Dual Analogue Controller. Tumblr Post.

Tumblr. url: https : / / keepfronting . tumblr . com / post / 189547023443 /

vgjunk-ad-for-the-ps1-dual-analogue-controller (visited on 11/14/2024).

[26] PlayStation 10 Million Model - Midnight Blue (SCPH-7000W) — PlayStation Genera-

tion. url: https://www.playstationgeneration.it/2010/08/playstation-

10-million-model.html (visited on 11/14/2024).

[27] Sony Playstation SCPH-900x GPU Specs. TechPowerUp. Nov. 14, 2024. url: https:

//www.techpowerup.com/gpu-specs/sony-playstation-scph-900x-gpu.

b8182 (visited on 11/14/2024).

[28] PSone (SCPH-100) — PlayStation Generation. url: https : / / www .

playstationgeneration.it/2010/08/psone.html (visited on 11/14/2024).

[29] Debugging Station - DTL-H1202. Instagram Post. Jan. 27, 2024. url: https://www.

instagram.com/p/C2l2hYrxFpK/ (visited on 11/14/2024).

[30] iCrewPlay Marco Consiglio. PlayStation Net Yaroze: la console fatta per creare i giochi.

Section: Notizie in Vetrina. July 31, 2022. url: https://www.icrewplay.com/

videoludica-la-playstation-net-yaroze/ (visited on 11/14/2024).

[31] Sony PlayStation Multitap — SCPH-1070 — Sony PS1 — Gumtree Australia. url:

https://www.gumtree.com.au/s- ad/mitcham/console- accessories/

sony-playstation-multitap-scph-1070-sony-ps1/1310483197 (visited on

11/15/2024).

[32] Curioso y Misterioso: PS1 Multitap. Video in Spanish. url: https://www.youtube.

com/watch?v=C1z4r3BG1Ew (visited on 11/15/2024).

[33] Rodrigo Copetti. PlayStation Architecture - A Practical Analysis. 2019. url: https:

//www.copetti.org/writings/consoles/playstation/.

[34] Endianness. Page Version ID: 1233149731. July 7, 2024. url: https : / / en .

wikipedia.org/w/index.php?title=Endianness&oldid=1233149731 (vis-

ited on 11/16/2024).

[35] PlayStation. Page Version ID: 141378433. Oct. 2, 2024. url: https : / / it .

wikipedia.org/w/index.php?title=PlayStation&oldid=141378433 (vis-

ited on 11/17/2024).

[36] How to use Signed and Unsigned in VHDL. url: https://creativo.blog.ir/

1399/01/08/vhdl (visited on 11/20/2024).

[37] RGB Color Images. ResearchGate. url: https://www.researchgate.net/figure/

RGB-Color-Images-The-Figure8-shows-how-to-find-the-RGB-value-

decomposition-of-a-32-bit_fig6_325568402 (visited on 11/20/2024).

[38] Single-bit Left/Right Rotating, Logical Shift, and Arithmetic Shift Operations on 8-bit

Data. ResearchGate. url: https://www.researchgate.net/figure/Single-

166

https://keepfronting.tumblr.com/post/189547023443/vgjunk-ad-for-the-ps1-dual-analogue-controller
https://keepfronting.tumblr.com/post/189547023443/vgjunk-ad-for-the-ps1-dual-analogue-controller
https://www.playstationgeneration.it/2010/08/playstation-10-million-model.html
https://www.playstationgeneration.it/2010/08/playstation-10-million-model.html
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-900x-gpu.b8182
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-900x-gpu.b8182
https://www.techpowerup.com/gpu-specs/sony-playstation-scph-900x-gpu.b8182
https://www.playstationgeneration.it/2010/08/psone.html
https://www.playstationgeneration.it/2010/08/psone.html
https://www.instagram.com/p/C2l2hYrxFpK/
https://www.instagram.com/p/C2l2hYrxFpK/
https://www.icrewplay.com/videoludica-la-playstation-net-yaroze/
https://www.icrewplay.com/videoludica-la-playstation-net-yaroze/
https://www.gumtree.com.au/s-ad/mitcham/console-accessories/sony-playstation-multitap-scph-1070-sony-ps1/1310483197
https://www.gumtree.com.au/s-ad/mitcham/console-accessories/sony-playstation-multitap-scph-1070-sony-ps1/1310483197
https://www.youtube.com/watch?v=C1z4r3BG1Ew
https://www.youtube.com/watch?v=C1z4r3BG1Ew
https://www.copetti.org/writings/consoles/playstation/
https://www.copetti.org/writings/consoles/playstation/
https://en.wikipedia.org/w/index.php?title=Endianness&oldid=1233149731
https://en.wikipedia.org/w/index.php?title=Endianness&oldid=1233149731
https://it.wikipedia.org/w/index.php?title=PlayStation&oldid=141378433
https://it.wikipedia.org/w/index.php?title=PlayStation&oldid=141378433
https://creativo.blog.ir/1399/01/08/vhdl
https://creativo.blog.ir/1399/01/08/vhdl
https://www.researchgate.net/figure/RGB-Color-Images-The-Figure8-shows-how-to-find-the-RGB-value-decomposition-of-a-32-bit_fig6_325568402
https://www.researchgate.net/figure/RGB-Color-Images-The-Figure8-shows-how-to-find-the-RGB-value-decomposition-of-a-32-bit_fig6_325568402
https://www.researchgate.net/figure/RGB-Color-Images-The-Figure8-shows-how-to-find-the-RGB-value-decomposition-of-a-32-bit_fig6_325568402
https://www.researchgate.net/figure/Single-bit-left-right-rotating-logical-shift-and-arithmetic-shift-operations-on-8-bit_fig6_282306909
https://www.researchgate.net/figure/Single-bit-left-right-rotating-logical-shift-and-arithmetic-shift-operations-on-8-bit_fig6_282306909

bit - left - right - rotating - logical - shift - and - arithmetic - shift -

operations-on-8-bit_fig6_282306909 (visited on 11/20/2024).

[39] Mux. Delay Slots. low tech. July 12, 2011. url: https://sigalrm.blogspot.com/

2011/07/delay-slots.html (visited on 11/21/2024).

[40] Atomicity, Interlaced Mode, Buffered Ordering Tables - PlayStation Development Net-

work. url: https://www.psxdev.net/forum/viewtopic.php?t=561 (visited on

11/22/2024).

[41] FF7/Kernel/Memory Management - Final Fantasy Inside. url: https://wiki.ffrtt.

ru/index.php/FF7/Kernel/Memory_management (visited on 11/22/2024).

[42] PSX/TIM format - Final Fantasy Inside. url: https://wiki.ffrtt.ru/index.php/

PSX/TIM_format#Image_data (visited on 11/22/2024).

[43] DIY Calculator :: The Origin of the Computer Console/Display/Screen/Monitor. url:

https://www.clivemaxfield.com/diycalculator/popup-h-console.shtml

(visited on 11/22/2024).

[44] How PlayStation Graphics & Visual Artefacts Work. url: https://pikuma.com/

blog/how-to-make-ps1-graphics (visited on 11/23/2024).

[45] CS307: Introduction to Computer Graphics. url: https://cs.wellesley.edu/

˜cs307/lectures/Transparency-S22.html (visited on 12/19/2024).

[46] Ícaro L. L. da Cunha and Luiz M. G. Gonçalves. An Adaptive and Hybrid Approach

to Revisiting the Visibility Pipeline. Publisher: Centro Latinoamericano de Estudios en

Informática. Apr. 2016. url: http://www.scielo.edu.uy/scielo.php?script=

sci_abstract&pid=S0717-50002016000100008&lng=es&nrm=iso&tlng=en

(visited on 12/20/2024).

[47] Hendrik Lensch. Computer Graphics - Camera Transformations , pagina 19. url:

https://resources.mpi-inf.mpg.de/departments/d4/teaching/ws200708/

cg/slides/CG15-Camera.pdf (visited on 12/12/2024).

[48] Line Clipping — Set 1 (Cohen–Sutherland Algorithm). GeeksforGeeks. Section: Algo-

rithms. url: https://www.geeksforgeeks.org/line-clipping-set-1-cohen-

sutherland-algorithm/ (visited on 12/21/2024).

[49] Liang-Barsky Line Clipping. url: https://www.cs.helsinki.fi/group/goa/

viewing/leikkaus/intro.html (visited on 12/21/2024).

[50] Fabio Biscaro. Numeri binari in notifica IEEE 754 a 32 bit. Dec. 26, 2012. url: https:

//www.youtube.com/watch?app=desktop&v=N6U_xUdUWC8&t=230s (visited on

12/21/2024).

[51] Adding Fixed point arithmetic to your design - theDataBus.in. July 23, 2020. url:

https://thedatabus.in/fixed-point (visited on 12/21/2024).

[52] FixedPoint - vanhunteradams. url: https://vanhunteradams.com/FixedPoint/

FixedPoint.html (visited on 12/21/2024).

167

https://www.researchgate.net/figure/Single-bit-left-right-rotating-logical-shift-and-arithmetic-shift-operations-on-8-bit_fig6_282306909
https://www.researchgate.net/figure/Single-bit-left-right-rotating-logical-shift-and-arithmetic-shift-operations-on-8-bit_fig6_282306909
https://www.researchgate.net/figure/Single-bit-left-right-rotating-logical-shift-and-arithmetic-shift-operations-on-8-bit_fig6_282306909
https://sigalrm.blogspot.com/2011/07/delay-slots.html
https://sigalrm.blogspot.com/2011/07/delay-slots.html
https://www.psxdev.net/forum/viewtopic.php?t=561
https://wiki.ffrtt.ru/index.php/FF7/Kernel/Memory_management
https://wiki.ffrtt.ru/index.php/FF7/Kernel/Memory_management
https://wiki.ffrtt.ru/index.php/PSX/TIM_format#Image_data
https://wiki.ffrtt.ru/index.php/PSX/TIM_format#Image_data
https://www.clivemaxfield.com/diycalculator/popup-h-console.shtml
https://pikuma.com/blog/how-to-make-ps1-graphics
https://pikuma.com/blog/how-to-make-ps1-graphics
https://cs.wellesley.edu/~cs307/lectures/Transparency-S22.html
https://cs.wellesley.edu/~cs307/lectures/Transparency-S22.html
http://www.scielo.edu.uy/scielo.php?script=sci_abstract&pid=S0717-50002016000100008&lng=es&nrm=iso&tlng=en
http://www.scielo.edu.uy/scielo.php?script=sci_abstract&pid=S0717-50002016000100008&lng=es&nrm=iso&tlng=en
https://resources.mpi-inf.mpg.de/departments/d4/teaching/ws200708/cg/slides/CG15-Camera.pdf
https://resources.mpi-inf.mpg.de/departments/d4/teaching/ws200708/cg/slides/CG15-Camera.pdf
https://www.geeksforgeeks.org/line-clipping-set-1-cohen-sutherland-algorithm/
https://www.geeksforgeeks.org/line-clipping-set-1-cohen-sutherland-algorithm/
https://www.cs.helsinki.fi/group/goa/viewing/leikkaus/intro.html
https://www.cs.helsinki.fi/group/goa/viewing/leikkaus/intro.html
https://www.youtube.com/watch?app=desktop&v=N6U_xUdUWC8&t=230s
https://www.youtube.com/watch?app=desktop&v=N6U_xUdUWC8&t=230s
https://thedatabus.in/fixed-point
https://vanhunteradams.com/FixedPoint/FixedPoint.html
https://vanhunteradams.com/FixedPoint/FixedPoint.html

[53] SECURITY OFFENSE AND DEFENSE STRATEGIES: VIDEO-GAME CONSOLES

ARCHITECTURE UNDER MICROSCOPE. SlideShare. July 11, 2016. url: https:

/ / www . slideshare . net / slideshow / security - offense - and - defense -

strategies - videogame - consoles - architecture - under - microscope /

63910924 (visited on 12/22/2024).

[54] Pipeline di Rendering. url: https : / / media . springernature . com / lw685 /

springer - static / image / chp % 3A10 . 1007 % 2F978 - 1 - 4842 - 8652 - 4 _ 1 /

MediaObjects/523243_1_En_1_Fig1_HTML.jpg (visited on 12/24/2024).

[55] Texture mapping. SlideShare. Jan. 1, 2014. url: https://www.slideshare.net/

slideshow/texture-mapping/29622076 (visited on 12/24/2024).

[56] Resident Evil 1.5 - PS1 - Characters by GR-85 on DeviantArt. June 4, 2021. url:

https://www.deviantart.com/gr- 85/art/Resident- Evil- 1- 5- PS1-

Characters-881591595 (visited on 12/24/2024).

[57] Imgur. Imgur: N64 vs PSX Texture Mapping. Imgur. url: https://imgur.com/

aGc8WTE (visited on 12/24/2024).

[58] Attribute Tessellation — Simplygon 10.2.400.0. url: https : / / documentation .

simplygon . com / SimplygonSDK _ 10 . 2 . 400 . 0 / overview / concepts /

attributetessellation.html (visited on 12/24/2024).

[59] Why do Playstation 1 polys jitter when the camera pans? NeoGAF. Aug. 20, 2014. url:

https://www.neogaf.com/threads/why-do-playstation-1-polys-jitter-

when-the-camera-pans.879050/ (visited on 12/24/2024).

[60] Quinforce Gaming: Mega Man Image. url: https : / / quinforcegaming .

wordpress.com/wp-content/uploads/2016/12/psx_vs_n64___megaman_

legends___by_elias1986.png?w=736 (visited on 12/24/2024).

168

https://www.slideshare.net/slideshow/security-offense-and-defense-strategies-videogame-consoles-architecture-under-microscope/63910924
https://www.slideshare.net/slideshow/security-offense-and-defense-strategies-videogame-consoles-architecture-under-microscope/63910924
https://www.slideshare.net/slideshow/security-offense-and-defense-strategies-videogame-consoles-architecture-under-microscope/63910924
https://www.slideshare.net/slideshow/security-offense-and-defense-strategies-videogame-consoles-architecture-under-microscope/63910924
https://media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-1-4842-8652-4_1/MediaObjects/523243_1_En_1_Fig1_HTML.jpg
https://media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-1-4842-8652-4_1/MediaObjects/523243_1_En_1_Fig1_HTML.jpg
https://media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-1-4842-8652-4_1/MediaObjects/523243_1_En_1_Fig1_HTML.jpg
https://www.slideshare.net/slideshow/texture-mapping/29622076
https://www.slideshare.net/slideshow/texture-mapping/29622076
https://www.deviantart.com/gr-85/art/Resident-Evil-1-5-PS1-Characters-881591595
https://www.deviantart.com/gr-85/art/Resident-Evil-1-5-PS1-Characters-881591595
https://imgur.com/aGc8WTE
https://imgur.com/aGc8WTE
https://documentation.simplygon.com/SimplygonSDK_10.2.400.0/overview/concepts/attributetessellation.html
https://documentation.simplygon.com/SimplygonSDK_10.2.400.0/overview/concepts/attributetessellation.html
https://documentation.simplygon.com/SimplygonSDK_10.2.400.0/overview/concepts/attributetessellation.html
https://www.neogaf.com/threads/why-do-playstation-1-polys-jitter-when-the-camera-pans.879050/
https://www.neogaf.com/threads/why-do-playstation-1-polys-jitter-when-the-camera-pans.879050/
https://quinforcegaming.wordpress.com/wp-content/uploads/2016/12/psx_vs_n64___megaman_legends___by_elias1986.png?w=736
https://quinforcegaming.wordpress.com/wp-content/uploads/2016/12/psx_vs_n64___megaman_legends___by_elias1986.png?w=736
https://quinforcegaming.wordpress.com/wp-content/uploads/2016/12/psx_vs_n64___megaman_legends___by_elias1986.png?w=736

General Bibliography

[61] Sony PlayStation: The Price Heard Around the World - ”299” - (E3 1995 Keynote) -

YouTube. url: https://www.youtube.com/watch?v=ExaAYIKsDBI (visited on

11/13/2024).

[62] PlayStation History. url: https : / / playstationmuseum . com / history . html

(visited on 11/13/2024).

[63] Official Complete History of PlayStation [HD] - YouTube. Tags: #history, #ps1, #xbox,

#ps4, #pc, #nintendo, #documentary. url: https://www.youtube.com/watch?v=

CEgnzJkuZq4 (visited on 11/13/2024).

[64] Lista modelli PlayStation® — PlayStation Generation. url: https : / / www .

playstationgeneration.it/2011/04/lista- modelli- playstation.html

(visited on 11/13/2024).

[65] PlayStation Serie SCPH-3000 e SCPH-3500 — PlayStation Generation. url: https:

//www.playstationgeneration.it/2011/04/playstation- serie- scph-

3000-e-scph-3500.html (visited on 11/14/2024).

[66] PlayStation Serie SCPH-5000 e SCPH-5500 — PlayStation Generation. url: https:

//www.playstationgeneration.it/2011/04/playstation- serie- scph-

5xxx.html (visited on 11/14/2024).

[67] PlayStation Serie SCPH-7000 / SCPH-7500 — PlayStation Generation. url: https:

//www.playstationgeneration.it/2011/04/playstation- serie- scph-

7xxx.html (visited on 11/14/2024).

[68] PlayStation Serie SCPH-9000 — PlayStation Generation. url: https : / / www .

playstationgeneration.it/2011/04/playstation-serie-scph-9xxx.html

(visited on 11/14/2024).

[69] PSone (SCPH-100) — PlayStation Generation. url: https : / / www .

playstationgeneration.it/2010/08/psone.html (visited on 11/14/2024).

[70] PlayStation models. In: Wikipedia. Page Version ID: 1254347140. Oct. 30, 2024. url:

https://en.wikipedia.org/w/index.php?title=PlayStation_models&

oldid=1254347140 (visited on 11/14/2024).

169

https://www.youtube.com/watch?v=ExaAYIKsDBI
https://playstationmuseum.com/history.html
https://www.youtube.com/watch?v=CEgnzJkuZq4
https://www.youtube.com/watch?v=CEgnzJkuZq4
https://www.playstationgeneration.it/2011/04/lista-modelli-playstation.html
https://www.playstationgeneration.it/2011/04/lista-modelli-playstation.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-3000-e-scph-3500.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-3000-e-scph-3500.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-3000-e-scph-3500.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-5xxx.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-5xxx.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-5xxx.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-7xxx.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-7xxx.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-7xxx.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-9xxx.html
https://www.playstationgeneration.it/2011/04/playstation-serie-scph-9xxx.html
https://www.playstationgeneration.it/2010/08/psone.html
https://www.playstationgeneration.it/2010/08/psone.html
https://en.wikipedia.org/w/index.php?title=PlayStation_models&oldid=1254347140
https://en.wikipedia.org/w/index.php?title=PlayStation_models&oldid=1254347140

[71] Net Yaroze. In: Wikipedia. Page Version ID: 1239658662. Aug. 10, 2024. url: https:

//en.wikipedia.org/w/index.php?title=Net_Yaroze&oldid=1239658662

(visited on 11/14/2024).

[72] Sony Computer Entertainment Inc. PlayStation Hardware. First edition. Publication

date: August 1998. Confidential Information of Sony Computer Entertainment, not for

general distribution. All rights reserved by Sony Computer Entertainment Inc. Unautho-

rized reproduction prohibited. Sony Computer Entertainment America, 919 E. Hillsdale

Blvd., 2nd floor, Foster City, CA 94404 & Sony Computer Entertainment Europe, Waver-

ley House, 7-12 Noel Street, London W1V 4HH, England: Sony Computer Entertainment

Inc., 1998.

[73] Rodrigo Copetti. PlayStation Architecture - A Practical Analysis. 2019. url: https:

//www.copetti.org/writings/consoles/playstation/.

[74] PSXSPX Specifications. Detailed specifications and technical information about the

PlayStation. url: https://problemkaputt.de/psx-spx.htm#memorymap (visited

on 11/16/2024).

[75] Sega Mega Drive. In: Wikipedia. Page Version ID: 141076671. Sept. 12, 2024. url:

https://it.wikipedia.org/w/index.php?title=Sega_Mega_Drive&oldid=

141076671 (visited on 11/15/2024).

[76] Nintendo Entertainment System. In: Wikipedia. Page Version ID: 141762635. Oct. 22,

2024. url: https://it.wikipedia.org/w/index.php?title=Nintendo_

Entertainment_System&oldid=141762635 (visited on 11/15/2024).

[77] Classic RISC pipeline. In: Wikipedia. Page Version ID: 1257250164. Nov. 14, 2024. url:

https://en.wikipedia.org/w/index.php?title=Classic_RISC_pipeline&

oldid=1257250164 (visited on 11/15/2024).

[78] Endianness. In: Wikipedia. Page Version ID: 1233149731. July 7, 2024. url: https:

//en.wikipedia.org/w/index.php?title=Endianness&oldid=1233149731

(visited on 11/16/2024).

[79] Motorola 68000. In: Wikipedia. Page Version ID: 1256024444. Nov. 7, 2024. url:

https://en.wikipedia.org/w/index.php?title=Motorola_68000&oldid=

1256024444 (visited on 11/16/2024).

[80] My Hardest Bug Ever. url: https://www.gamedeveloper.com/programming/my-

hardest-bug-ever (visited on 11/15/2024).

[81] dbousamra. PlayStation Emulation Guide. Gist. Includes a PlayStation Emulation

Guide by Lionel Flandrin. url: https : / / gist . github . com / dbousamra /

f662f381d33fcf5c4a5475c4a656fa19 (visited on 11/26/2024).

[82] Kingcom. armips: An Assembler for Various ARM and MIPS Platforms. Accessed:

2024-11-20. Licensed under MIT. Original release date: 2013-10-05. 2013. url: https:

//github.com/Kingcom/armips.

170

https://en.wikipedia.org/w/index.php?title=Net_Yaroze&oldid=1239658662
https://en.wikipedia.org/w/index.php?title=Net_Yaroze&oldid=1239658662
https://www.copetti.org/writings/consoles/playstation/
https://www.copetti.org/writings/consoles/playstation/
https://problemkaputt.de/psx-spx.htm#memorymap
https://it.wikipedia.org/w/index.php?title=Sega_Mega_Drive&oldid=141076671
https://it.wikipedia.org/w/index.php?title=Sega_Mega_Drive&oldid=141076671
https://it.wikipedia.org/w/index.php?title=Nintendo_Entertainment_System&oldid=141762635
https://it.wikipedia.org/w/index.php?title=Nintendo_Entertainment_System&oldid=141762635
https://en.wikipedia.org/w/index.php?title=Classic_RISC_pipeline&oldid=1257250164
https://en.wikipedia.org/w/index.php?title=Classic_RISC_pipeline&oldid=1257250164
https://en.wikipedia.org/w/index.php?title=Endianness&oldid=1233149731
https://en.wikipedia.org/w/index.php?title=Endianness&oldid=1233149731
https://en.wikipedia.org/w/index.php?title=Motorola_68000&oldid=1256024444
https://en.wikipedia.org/w/index.php?title=Motorola_68000&oldid=1256024444
https://www.gamedeveloper.com/programming/my-hardest-bug-ever
https://www.gamedeveloper.com/programming/my-hardest-bug-ever
https://gist.github.com/dbousamra/f662f381d33fcf5c4a5475c4a656fa19
https://gist.github.com/dbousamra/f662f381d33fcf5c4a5475c4a656fa19
https://github.com/Kingcom/armips
https://github.com/Kingcom/armips

[83] Grumpy Coders. PCSX-Redux: A PlayStation 1 Development and Reverse Engineer-

ing Project. An assembler for various ARM and MIPS platforms. Builds available at

http://buildbot.orphis.net/armips/. Licensed under GPL-2.0. Original release date: 2018-

12-12. 2018. url: https://github.com/grumpycoders/pcsx-redux.

[84] PSX-EXE Format. url: https : / / www . retroreversing . com/ (visited on

12/10/2024).

[85] ARM9. bin2exe.py - ARM9/psxdev. Accessed: 2024-11-20. A Python script for convert-

ing binary files into PlayStation executable format. 2024. url: https://github.com/

ARM9/psxdev/blob/master/libpsx/tools/bin2exe.py.

[86] Massimo Marchi. Appunti di MIPS 32. Capitolo 3: Le pseudo istruzioni. 2014. url:

https://marchi.ricerca.di.unimi.it/Teaching/Architetture14b/Es1/

Assembly.pdf.

[87] Università degli Studi di Napoli Federico II. Programmazione Strutturata: Procedure,

Subroutines, Functions. Materiale didattico disponibile online. 2024. url: https://

www.docenti.unina.it/webdocenti-be/allegati/materiale-didattico/

232556.

[88] Automatica e Gestionale Università di Roma - Dipartimento di Ingegneria Infor-

matica. Rappresentazione dei numeri e complementi didattici. Accessed: 2024-11-

25. url: http://www.diag.uniroma1.it/˜marte/homepage/didattica/

complementi.didattici/PRIMA%20PARTE%20-%20complementi%20didattici/

3-rappresentazione.pdf.

[89] Arithmetic shift. In: Wikipedia. Page Version ID: 1221514546. Apr. 30, 2024. url:

https://en.wikipedia.org/w/index.php?title=Arithmetic_shift&oldid=

1221514546 (visited on 11/26/2024).

[90] Alessandro Sperduti. Pipeline e Architetture RISC. Accessed: November 25, 2024. n.d.

url: https://www.math.unipd.it/˜sperduti/ARCHITETTURE-1/pipeline-

2.pdf.

[91] Università di Verona. Architetture dei Sistemi di Elaborazione: Delay Slot. Accessed:

November 25, 2024. n.d. url: https : / / www . di . univr . it / documenti /

OccorrenzaIns/matdid/matdid557805.pdf.

[92] Wikipedia contributors. Delay slot. Accessed: November 25, 2024. n.d. url: https:

//en.wikipedia.org/wiki/Delay_slot.

[93] Nintendo 64 Architecture — A Practical Analysis. The Copetti site. Section: writings.

Sept. 12, 2019. url:https://www.copetti.org/writings/consoles/nintendo-

64/ (visited on 11/26/2024).

[94] Stanford University. RISC vs. CISC. Accessed: November 25, 2024. n.d. url: https:

//cs.stanford.edu/people/eroberts/courses/soco/projects/risc/

risccisc/.

171

https://github.com/grumpycoders/pcsx-redux
https://www.retroreversing.com/
https://github.com/ARM9/psxdev/blob/master/libpsx/tools/bin2exe.py
https://github.com/ARM9/psxdev/blob/master/libpsx/tools/bin2exe.py
https://marchi.ricerca.di.unimi.it/Teaching/Architetture14b/Es1/Assembly.pdf
https://marchi.ricerca.di.unimi.it/Teaching/Architetture14b/Es1/Assembly.pdf
https://www.docenti.unina.it/webdocenti-be/allegati/materiale-didattico/232556
https://www.docenti.unina.it/webdocenti-be/allegati/materiale-didattico/232556
https://www.docenti.unina.it/webdocenti-be/allegati/materiale-didattico/232556
http://www.diag.uniroma1.it/~marte/homepage/didattica/complementi.didattici/PRIMA%20PARTE%20-%20complementi%20didattici/3-rappresentazione.pdf
http://www.diag.uniroma1.it/~marte/homepage/didattica/complementi.didattici/PRIMA%20PARTE%20-%20complementi%20didattici/3-rappresentazione.pdf
http://www.diag.uniroma1.it/~marte/homepage/didattica/complementi.didattici/PRIMA%20PARTE%20-%20complementi%20didattici/3-rappresentazione.pdf
https://en.wikipedia.org/w/index.php?title=Arithmetic_shift&oldid=1221514546
https://en.wikipedia.org/w/index.php?title=Arithmetic_shift&oldid=1221514546
https://www.math.unipd.it/~sperduti/ARCHITETTURE-1/pipeline-2.pdf
https://www.math.unipd.it/~sperduti/ARCHITETTURE-1/pipeline-2.pdf
https://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid557805.pdf
https://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid557805.pdf
https://en.wikipedia.org/wiki/Delay_slot
https://en.wikipedia.org/wiki/Delay_slot
https://www.copetti.org/writings/consoles/nintendo-64/
https://www.copetti.org/writings/consoles/nintendo-64/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/

[95] Spiceworks. RISC vs. CISC: Differences and Advantages. Accessed: November 25, 2024.

n.d. url: https://www.spiceworks.com/tech/tech-general/articles/risc-

vs-cisc/#_001.

[96] Nerdly Pleasures: The Rise of Interlacing in Video Game Consoles. Nerdly Pleasures.

Oct. 12, 2017. url: https://nerdlypleasures.blogspot.com/2017/10/the-

rise-of-interlacing-in-video-game.html (visited on 11/26/2024).

[97] An Overview of PlayStation Aesthetics — Jaybee. Patreon. url: https : / / www .

patreon.com/posts/overview-of-49375996 (visited on 11/22/2024).

[98] Edward Angel. Interactive Computer Graphics: A Top-Down Approach with WebGL.

8th. Pearson, 2022. isbn: 9780137869761. url: https://www.pearson.com.

[99] MIPS architecture. In: Wikipedia. Page Version ID: 1256527461. Nov. 10, 2024. url:

https://en.wikipedia.org/w/index.php?title=MIPS_architecture&

oldid=1256527461 (visited on 11/26/2024).

[100] Stack vs Heap Memory Allocation. GeeksforGeeks. Section: Difference Between.

Dec. 26, 2018. url: https://www.geeksforgeeks.org/stack-vs-heap-memory-

allocation/ (visited on 11/26/2024).

[101] MIPS Technologies, Inc. MIPS32 Architecture For Programmers, Volume II: The

MIPS32 Instruction Set. 2.00. MD00086. Document Number: MD00086, Copyright

© 2001-2003 MIPS Technologies Inc. MIPS Technologies, Inc. Mountain View, CA,

USA, June 2003.

[102] DuckStation: Fast PS1 Emulator. url: https://duckstation.org/ (visited on

11/25/2024).

[103] Downloads — PSXDEV. Accessed: 2024-12-10. A comprehensive collection of PlaySta-

tion 1 development tools, SDKs, and documentation. url: https://www.psxdev.

net/downloads.html (visited on 12/10/2024).

[104] psx.arthus.net. Accessed: 2024-12-10. A comprehensive archive of PlayStation devel-

opment resources, including tools, documentation, and tutorials. url: https://psx.

arthus.net/ (visited on 12/10/2024).

[105] ps1.consoledev.net. url: https://ps1.consoledev.net/ (visited on 12/10/2024).

[106] no$psx. url: https://problemkaputt.de/psx.htm (visited on 12/10/2024).

[107] Code::Blocks. url: https://www.codeblocks.org/ (visited on 12/10/2024).

[108] Official Playstation 1 Software Development Kit (PSYQ). url: https : / / www .

retroreversing.com/ (visited on 12/10/2024).

[109] Painter’s algorithm. In: Wikipedia. Page Version ID: 1248759290. Oct. 1, 2024. url:

https://en.wikipedia.org/w/index.php?title=Painter%27s_algorithm&

oldid=1248759290 (visited on 12/19/2024).

[110] PlayStation Ordering Table Tutorial. url: https://psx.arthus.net/sdk/Psy-

Q/DOCS/TECHNOTE/ordtbl.pdf (visited on 12/12/2024).

172

https://www.spiceworks.com/tech/tech-general/articles/risc-vs-cisc/#_001
https://www.spiceworks.com/tech/tech-general/articles/risc-vs-cisc/#_001
https://nerdlypleasures.blogspot.com/2017/10/the-rise-of-interlacing-in-video-game.html
https://nerdlypleasures.blogspot.com/2017/10/the-rise-of-interlacing-in-video-game.html
https://www.patreon.com/posts/overview-of-49375996
https://www.patreon.com/posts/overview-of-49375996
https://www.pearson.com
https://en.wikipedia.org/w/index.php?title=MIPS_architecture&oldid=1256527461
https://en.wikipedia.org/w/index.php?title=MIPS_architecture&oldid=1256527461
https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/
https://www.geeksforgeeks.org/stack-vs-heap-memory-allocation/
https://duckstation.org/
https://www.psxdev.net/downloads.html
https://www.psxdev.net/downloads.html
https://psx.arthus.net/
https://psx.arthus.net/
https://ps1.consoledev.net/
https://problemkaputt.de/psx.htm
https://www.codeblocks.org/
https://www.retroreversing.com/
https://www.retroreversing.com/
https://en.wikipedia.org/w/index.php?title=Painter%27s_algorithm&oldid=1248759290
https://en.wikipedia.org/w/index.php?title=Painter%27s_algorithm&oldid=1248759290
https://psx.arthus.net/sdk/Psy-Q/DOCS/TECHNOTE/ordtbl.pdf
https://psx.arthus.net/sdk/Psy-Q/DOCS/TECHNOTE/ordtbl.pdf

[111] Net Yarooze User Guide. url: https://psx.arthus.net/sdk/NetYaroze/Net%

20Yaroze%20Official%20-%20Startup%20Guide.pdf (visited on 12/12/2024).

[112] Run-Time Library Overview 4.4. url: https : / / psx . arthus . net / sdk / Psy -

Q/DOCS/Devrefs/Libovr.pdf (visited on 12/12/2024).

[113] Tech Note SCEE: Developers Guide - 2.9. url: https://psx.arthus.net/sdk/Psy-

Q/DOCS/TECHNOTE/scee_dev.pdf (visited on 12/21/2024).

[114] Dev Refs Inline Programming Reference. url: https : / / import . cdn .

thinkific . com / 167815 / aT4TYXwuQleC3CYjyzZl _ Sony - PlayStation -

GTEInlineReference.pdf (visited on 12/21/2024).

[115] Training (Oct 96) GTE. url: https://import.cdn.thinkific.com/167815/

sQCykqKxQyqNKGaBDwum_Sony-Slides-GTE.pdf (visited on 12/21/2024).

[116] Geometry Transformation Engine (GTE) - PlayStation Specifications - psx-spx. url:

https://psx- spx.consoledev.net/geometrytransformationenginegte/

#gte-registers (visited on 12/21/2024).

[117] Fixed Point Arithmetic and Tricks. url: http://x86asm.net/articles/fixed-

point-arithmetic-and-tricks/index.html (visited on 12/21/2024).

[118] Verity Townsend. Final Fantasy’s original creator reveals why FFVII was released on

PlayStation and not Nintendo 64. AUTOMATON WEST. Feb. 15, 2024. url: https:

//automaton-media.com/en/news/20240215-27218/ (visited on 12/22/2024).

[119] The Ultimate Guide To PSX CD-Rs. Alex. url: https://alex-free.github.io/

psx-cdr/ (visited on 12/22/2024).

[120] PSXSPX CDROM Drive. url: https://problemkaputt.de/psxspx- cdrom-

drive.htm (visited on 12/22/2024).

[121] [DOWNLOAD] The Revenge of STRIPISO - PlayStation Development Network. url:

https://www.psxdev.net/forum/viewtopic.php?f=60&t=997 (visited on

12/22/2024).

[122] [DOWNLOAD] PSXLICENSE (V1.0) - PlayStation Development Network. url: https:

//www.psxdev.net/forum/viewtopic.php?f=69&t=704 (visited on 12/22/2024).

[123] PSXSPX CDROM File Playstation EXE and SYSTEM.CNF. url: https : / /

problemkaputt.de/psxspx-cdrom-file-playstation-exe-and-system-

cnf.htm (visited on 12/22/2024).

[124] Video Games End Stuff. Behind The Scenes - How PlayStation Discs are made. Oct. 27,

2020. url: https : / / www . youtube . com / watch ? v = 5rKMeesV1jI (visited on

12/22/2024).

[125] Dev Refs - File Formats. url: https://psx.arthus.net/sdk/Psy-Q/DOCS/

Devrefs/Filefrmt.pdf (visited on 12/22/2024).

173

https://psx.arthus.net/sdk/NetYaroze/Net%20Yaroze%20Official%20-%20Startup%20Guide.pdf
https://psx.arthus.net/sdk/NetYaroze/Net%20Yaroze%20Official%20-%20Startup%20Guide.pdf
https://psx.arthus.net/sdk/Psy-Q/DOCS/Devrefs/Libovr.pdf
https://psx.arthus.net/sdk/Psy-Q/DOCS/Devrefs/Libovr.pdf
https://psx.arthus.net/sdk/Psy-Q/DOCS/TECHNOTE/scee_dev.pdf
https://psx.arthus.net/sdk/Psy-Q/DOCS/TECHNOTE/scee_dev.pdf
https://import.cdn.thinkific.com/167815/aT4TYXwuQleC3CYjyzZl_Sony-PlayStation-GTEInlineReference.pdf
https://import.cdn.thinkific.com/167815/aT4TYXwuQleC3CYjyzZl_Sony-PlayStation-GTEInlineReference.pdf
https://import.cdn.thinkific.com/167815/aT4TYXwuQleC3CYjyzZl_Sony-PlayStation-GTEInlineReference.pdf
https://import.cdn.thinkific.com/167815/sQCykqKxQyqNKGaBDwum_Sony-Slides-GTE.pdf
https://import.cdn.thinkific.com/167815/sQCykqKxQyqNKGaBDwum_Sony-Slides-GTE.pdf
https://psx-spx.consoledev.net/geometrytransformationenginegte/#gte-registers
https://psx-spx.consoledev.net/geometrytransformationenginegte/#gte-registers
http://x86asm.net/articles/fixed-point-arithmetic-and-tricks/index.html
http://x86asm.net/articles/fixed-point-arithmetic-and-tricks/index.html
https://automaton-media.com/en/news/20240215-27218/
https://automaton-media.com/en/news/20240215-27218/
https://alex-free.github.io/psx-cdr/
https://alex-free.github.io/psx-cdr/
https://problemkaputt.de/psxspx-cdrom-drive.htm
https://problemkaputt.de/psxspx-cdrom-drive.htm
https://www.psxdev.net/forum/viewtopic.php?f=60&t=997
https://www.psxdev.net/forum/viewtopic.php?f=69&t=704
https://www.psxdev.net/forum/viewtopic.php?f=69&t=704
https://problemkaputt.de/psxspx-cdrom-file-playstation-exe-and-system-cnf.htm
https://problemkaputt.de/psxspx-cdrom-file-playstation-exe-and-system-cnf.htm
https://problemkaputt.de/psxspx-cdrom-file-playstation-exe-and-system-cnf.htm
https://www.youtube.com/watch?v=5rKMeesV1jI
https://psx.arthus.net/sdk/Psy-Q/DOCS/Devrefs/Filefrmt.pdf
https://psx.arthus.net/sdk/Psy-Q/DOCS/Devrefs/Filefrmt.pdf

[126] Sydney Butler. Why Did the PlayStation 1 Have Wobbly Graphics? How-To Geek.

Section: Video Games. June 15, 2024. url: https://www.howtogeek.com/why-

did-the-playstation-1-have-wobbly-graphics/ (visited on 12/24/2024).

[127] Graphics Processing Unit (GPU) - PlayStation Specifications - psx-spx. url: https:

/ / psx - spx . consoledev . net / graphicsprocessingunitgpu/ (visited on

12/24/2024).

[128] Why PlayStation 1 Graphics Warped and Wobbled so much — MVG - YouTube. url:

https://www.youtube.com/watch?v=x8TO-nrUtSI (visited on 12/24/2024).

[129] Albert Fornells Herrera. 11. Texture Mapping. Computer Graphics. Material didattico

per grafica computerizzata. ENTI, University of Barcelona, 2016. url: https://

bitbucket.org/afornellsENTI/computergraphics.

[130] PSXSPX CDROM File Formats. url: https://problemkaputt.de/psxspx-cdrom-

file-formats.htm (visited on 12/26/2024).

[131] CDROM Drive - PlayStation Specifications - psx-spx. url: https: // psx- spx.

consoledev . net / cdromdrive / #cdrom - xa - subheader - file - channel -

interleave (visited on 12/26/2024).

[132] John ”Lameguy” Wilbert Villamor. Lameguy64/mkpsxiso. original-date: 2016-08-

06T12:53:05Z. Dec. 12, 2024. url: https://github.com/Lameguy64/mkpsxiso

(visited on 12/26/2024).

[133] PlayStation Development Network - PSX CD-ROM XA (eXtended Architecture). url:

https://www.psxdev.net/help/psx_extended_architecture.html (visited

on 12/26/2024).

[134] psx-cue-sbi-collection/redump.org/Tekken 3 (Europe).cue at master · opsxcq/psx-cue-

sbi-collection · GitHub. url: https://github.com/opsxcq/psx- cue- sbi-

collection/blob/master/redump.org/Tekken%203%20(Europe).cue (visited

on 12/26/2024).

[135] Gabriele Passuello. Thesis PSX - Passuello Gabriele. Repository pubblico su GitHub

per la tesi di Gabriele Passuello su Playstation. 2025. url: https://github.com/

gabrilink/Thesis-PSX-Passuello-Gabriele-PUBLIC (visited on 01/03/2025).

[136] Anonymous. Real-Time Fog using Post-processing in OpenGL. Accessed: 2024-12-10.

George Mason University, n.d. url: https://cs.gmu.edu/˜jchen/cs662/fog.

pdf.

[137] OpenGL Notes. Shading Models. Accessed: 2024-12-29. n.d. url: https://opengl-

notes.readthedocs.io/en/latest/topics/lighting/shading.html.

[138] Sony Computer Entertainment. Data Conversion Utilities – PlayStation Developer Ref-

erence Series. Accessed: 2024-12-29. 1998. url: https://archive.org/details/

SCE-DataConversionUtilities-Nov1998/page/n88/mode/1up.

174

https://www.howtogeek.com/why-did-the-playstation-1-have-wobbly-graphics/
https://www.howtogeek.com/why-did-the-playstation-1-have-wobbly-graphics/
https://psx-spx.consoledev.net/graphicsprocessingunitgpu/
https://psx-spx.consoledev.net/graphicsprocessingunitgpu/
https://www.youtube.com/watch?v=x8TO-nrUtSI
https://bitbucket.org/afornellsENTI/computergraphics
https://bitbucket.org/afornellsENTI/computergraphics
https://problemkaputt.de/psxspx-cdrom-file-formats.htm
https://problemkaputt.de/psxspx-cdrom-file-formats.htm
https://psx-spx.consoledev.net/cdromdrive/#cdrom-xa-subheader-file-channel-interleave
https://psx-spx.consoledev.net/cdromdrive/#cdrom-xa-subheader-file-channel-interleave
https://psx-spx.consoledev.net/cdromdrive/#cdrom-xa-subheader-file-channel-interleave
https://github.com/Lameguy64/mkpsxiso
https://www.psxdev.net/help/psx_extended_architecture.html
https://github.com/opsxcq/psx-cue-sbi-collection/blob/master/redump.org/Tekken%203%20(Europe).cue
https://github.com/opsxcq/psx-cue-sbi-collection/blob/master/redump.org/Tekken%203%20(Europe).cue
https://github.com/gabrilink/Thesis-PSX-Passuello-Gabriele-PUBLIC
https://github.com/gabrilink/Thesis-PSX-Passuello-Gabriele-PUBLIC
https://cs.gmu.edu/~jchen/cs662/fog.pdf
https://cs.gmu.edu/~jchen/cs662/fog.pdf
https://opengl-notes.readthedocs.io/en/latest/topics/lighting/shading.html
https://opengl-notes.readthedocs.io/en/latest/topics/lighting/shading.html
https://archive.org/details/SCE-DataConversionUtilities-Nov1998/page/n88/mode/1up
https://archive.org/details/SCE-DataConversionUtilities-Nov1998/page/n88/mode/1up

[139] Sony Computer Entertainment. MDEC Note - Technical Reference for Motion Decoding

on PlayStation. Accessed: 2024-12-29. n.d. url: https://psx.arthus.net/sdk/

Psy-Q/DOCS/TECHNOTE/mdecnote.pdf.

[140] Lameguy64. STR Player Library for PlayStation Development. Accessed: 2024-12-29.

n.d. url: https://www.psxdev.net/forum/viewtopic.php?t=507.

[141] Emu-Land Community. Discussion on Video Encoding for PlayStation. Accessed: 2024-

12-29. n.d. url: https://www.emu-land.net/forum/index.php?topic=24926.

30.

[142] Lameguy64. Animation Tutorial. Accessed: 2024-12-29. 2014. url: https://www.

psxdev.net/forum/viewtopic.php?f=51&t=658.

[143] Sony Computer Entertainment. Psy-Q Developer Reference: 3D Graphics. Accessed:

2024-12-29. 1998. url: https://psx.arthus.net/sdk/Psy-Q/DOCS/Devrefs/

3dgraph.pdf.

[144] Lameguy64. TMD Loader and Viewer. Accessed: 2024-12-29. 2017. url: https:

//www.psxdev.net/forum/viewtopic.php?f=64&t=626.

[145] Dominic Szablewski. Reverse Engineering Wipeout (PSX). Accessed on January 2, 2025.

2015. url: https://phoboslab.org/log/2015/04/reverse-engineering-

wipeout-psx (visited on 01/02/2025).

[146] Forest of Illusion. Wipeout Source Code Leak for PC Port. Accessed on January 2, 2025.

2022. url: https://x.com/forestillusion/status/1508048268176990209

(visited on 01/02/2025).

[147] Mixmag. Wipeout: The First Rave-Inspired Video Game. Accessed on January 2, 2025.

2021. url: https://mixmag.net/feature/wipeout-first-rave-inspired-

video- game- dance- music- soundtrack- designers- republic- psygnosis

(visited on 01/02/2025).

175

https://psx.arthus.net/sdk/Psy-Q/DOCS/TECHNOTE/mdecnote.pdf
https://psx.arthus.net/sdk/Psy-Q/DOCS/TECHNOTE/mdecnote.pdf
https://www.psxdev.net/forum/viewtopic.php?t=507
https://www.emu-land.net/forum/index.php?topic=24926.30
https://www.emu-land.net/forum/index.php?topic=24926.30
https://www.psxdev.net/forum/viewtopic.php?f=51&t=658
https://www.psxdev.net/forum/viewtopic.php?f=51&t=658
https://psx.arthus.net/sdk/Psy-Q/DOCS/Devrefs/3dgraph.pdf
https://psx.arthus.net/sdk/Psy-Q/DOCS/Devrefs/3dgraph.pdf
https://www.psxdev.net/forum/viewtopic.php?f=64&t=626
https://www.psxdev.net/forum/viewtopic.php?f=64&t=626
https://phoboslab.org/log/2015/04/reverse-engineering-wipeout-psx
https://phoboslab.org/log/2015/04/reverse-engineering-wipeout-psx
https://x.com/forestillusion/status/1508048268176990209
https://mixmag.net/feature/wipeout-first-rave-inspired-video-game-dance-music-soundtrack-designers-republic-psygnosis
https://mixmag.net/feature/wipeout-first-rave-inspired-video-game-dance-music-soundtrack-designers-republic-psygnosis

	Abstract in Italian
	Abstract
	I Origins and Hardware of PlayStation
	Thesis Objective
	The Birth of PlayStation
	Ken Kutaragi
	The Early Collaborations: Sony and Nintendo
	PS-X
	The Birth of Sony Computer Entertainment
	Market Assertion

	The Hardware of PlayStation
	The Models
	The SCPH-1000 Model
	The SCPH-3000 Model
	The SCPH-5000 Model
	The SCPH-7000 Model
	The SCPH-9000 Model
	The SCPH-100 Model
	The DTL-H Models

	Hardware Overview
	System Architecture
	CPU Introduction
	Graphics System Introduction
	Audio System Introduction
	Additional Supports
	Motherboard Analysis

	The PSX CPU
	Processor Characteristics
	Processor Origins
	Coprocessors Analysis
	Memory with Addressable Access

	The PSX GPU
	VRAM
	Video Outputs

	The PSX SPU
	Management of PSX I/O Interfaces
	CD Module
	Front Ports
	Rear Ports

	II Development and Programming Fundamentals on PS1
	Programming in MIPS Assembly
	The 32 General-Purpose Registers
	Elementary MIPS Instructions
	Data Transfer Instructions
	Load Instructions
	Store Instructions
	Differences between Load and Store
	Jump Instructions
	Branch Instructions
	The NOP Concept
	Arithmetical Instructions

	Console Emulation
	Programming Example
	The PS-EXE Format
	The Pseudo-Instruction Concept
	The Sub-Routine Concept

	Handling Binary Data
	Managing Negative Numbers
	Sign Extension
	Logical Operations
	The Bit-Shifting Concept

	In-depth Study of the MIPS Pipeline
	MIPS Pipeline Structure
	Limits of the MIPS Pipeline
	Managing Delay Slots
	Optimizing Delay Slots

	In-depth Study of the RISC Processor
	Historical Evolution and Context
	Differences between RISC and CISC
	Advantages of RISC Architecture

	Graphics System
	The Frame Buffer
	Display Configuration Parameters
	Color and Depth
	PSX Primitives
	Packet Management and Communication between CPU and GPU
	First Example of Basic Rendering in MIPS Assembly

	Memory Management
	The MIPS Application Binary Interface
	The Concepts of Heap and Stack
	Second Example of Basic Rendering in MIPS Assembly
	The Concept of Variable and Vector Alignment
	Third Example of Basic Rendering in MIPS Assembly

	Programming in C
	History of the PSY-Q SDK
	Key Programming Concepts
	Double Buffering
	Z-Sorting
	Ordering Tables

	Main System Libraries
	Geometry Transformation Engine
	3D Transformations
	Examples of GTE Instructions
	GTE Register Set

	Clipping
	Backface Culling
	Cohen-Sutherland Algorithm
	Liang-Barsky Algorithm
	Bounding Boxes

	Fixed Point Math
	In-depth Analysis of the PSX BIOS
	Reading Joypad Inputs via BIOS

	Reading the CD-ROM
	CD-ROM
	The Unique Design of PSX CDs
	Types of PlayStation Files
	Function to Read Binary Data from the Disc
	Anti-Piracy Mechanisms

	Textures
	Foundations of Texture Mapping
	Concept of T-PAGE
	Concept of CLUT
	Insight on the TIM format
	PSX Graphic Artifacts

	Audio
	Types of ADPCM formats
	Details on VAG and XA formats
	Management of Audio Tracks on CD-ROMs
	Example of audio implementation

	III Creating Demos on PlayStation: A Technical and Creative Showcase
	Demo Disc One (Showcase of Various Demos)
	Cube Transformations
	Bouncing Cubes
	Multiplayer
	Texture Mapping
	Fog
	Phong
	Movie / M-DEC
	3D Animation

	Demo Disc Two (WipEout)
	Reverse Engineering WipEout
	Structure of a PRM File (Object)
	Ship Rendering Part 1 (Primitives and Wireframe)
	Structure of a CMP File (Texture)
	Ship Rendering Part 2 (Textures)
	Structure of TRV, TRF, and TRS Files (Track Vertices, Faces, Sections)
	Track Rendering
	Implementation of Physics, Gameplay, and Sound Effects

	IV Resources and Final Considerations
	Conclusions
	Glossario
	Visual Documentation
	General Bibliography

